1
|
Mikhajlov O, Adar RM, Tătulea-Codrean M, Macé AS, Manzi J, Tabarin F, Battistella A, di Federico F, Joanny JF, Tran van Nhieu G, Bassereau P. Cell adhesion and spreading on fluid membranes through microtubules-dependent mechanotransduction. Nat Commun 2025; 16:1201. [PMID: 39885125 PMCID: PMC11782702 DOI: 10.1038/s41467-025-56343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Integrin clusters facilitate mechanical force transmission (mechanotransduction) and regulate biochemical signaling during cell adhesion. However, most studies have focused on rigid substrates. On fluid substrates like supported lipid bilayers (SLBs), integrin ligands are mobile, and adhesive complexes are traditionally thought unable to anchor for cell spreading. Here, we demonstrate that cells spread on SLBs coated with Invasin, a high-affinity integrin ligand. Unlike SLBs functionalized with RGD peptides, integrin clusters on Invasin-SLBs grow in size and complexity comparable to those on glass. While actomyosin contraction dominates adhesion maturation on stiff substrates, we find that on fluid SLBs, integrin mechanotransduction and cell spreading rely on dynein pulling forces along microtubules perpendicular to the membranes and microtubules pushing on adhesive complexes, respectively. These forces, potentially present on non-deformable surfaces, are revealed in fluid substrate systems. Supported by a theoretical model, our findings demonstrate a mechanical role for microtubules in integrin clustering.
Collapse
Affiliation(s)
- Oleg Mikhajlov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France.
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Inserm U1280, 1 Avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
- Laboratory of Biophysics and Cell Biology of Signaling, Biochemistry department, University of Geneva, 30 quai Ernest-Ansermet, 1211, Geneva, Switzerland.
| | - Ram M Adar
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
- Department of Physics, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Maria Tătulea-Codrean
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK
| | - Anne-Sophie Macé
- Institut Curie, Université PSL, CNRS UMR144, Paris, France
- Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, Université PSL, CNRS, Paris, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Fanny Tabarin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Aude Battistella
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Fahima di Federico
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Jean-François Joanny
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Guy Tran van Nhieu
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Inserm U1280, 1 Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France.
| |
Collapse
|
2
|
DeGiosio RA, Needham PG, Andrews OA, Tristan H, Grubisha MJ, Brodsky JL, Camacho C, Sweet RA. Differential regulation of MAP2 by phosphorylation events in proline-rich versus C-terminal domains. FASEB J 2023; 37:e23194. [PMID: 37702880 PMCID: PMC10539048 DOI: 10.1096/fj.202300486r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
MAP2 is a critical cytoskeletal regulator in neurons. The phosphorylation of MAP2 (MAP2-P) is well known to regulate core functions of MAP2, including microtubule (MT)/actin binding and facilitation of tubulin polymerization. However, site-specific studies of MAP2-P function in regions outside of the MT-binding domain (MTBD) are lacking. We previously identified a set of MAP2 phosphopeptides which are differentially expressed and predominantly increased in the cortex of individuals with schizophrenia relative to nonpsychiatric comparison subjects. The phosphopeptides originated not from the MTBD, but from the flanking proline-rich and C-terminal domains of MAP2. We sought to understand the contribution of MAP2-P at these sites on MAP2 function. To this end, we isolated a series of phosphomimetic MAP2C constructs and subjected them to cell-free tubulin polymerization, MT-binding, actin-binding, and actin polymerization assays. A subset of MAP2-P events significantly impaired these functions, with the two domains displaying different patterns of MAP2 regulation: proline-rich domain mutants T293E and T300E impaired MT assembly and actin-binding affinity but did not affect MT-binding, while C-terminal domain mutants S426E and S439D impaired all three functions. S443D also impaired MT assembly with minimal effects on MT- or actin-binding. Using heterologous cells, we also found that S426E but not T293E had a lower capability for process formation than the wild-type protein. These findings demonstrate the functional utility of MAP2-P in the proline-rich and C-terminal domains and point to distinct, domain-dependent regulations of MAP2 function, which can go on to affect cellular morphology.
Collapse
Affiliation(s)
- R A DeGiosio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - P G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - O A Andrews
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - H Tristan
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - M J Grubisha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - C Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - R A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Higgs VE, Das RM. Establishing neuronal polarity: microtubule regulation during neurite initiation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac007. [PMID: 38596701 PMCID: PMC10913830 DOI: 10.1093/oons/kvac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 04/11/2024]
Abstract
The initiation of nascent projections, or neurites, from the neuronal cell body is the first stage in the formation of axons and dendrites, and thus a critical step in the establishment of neuronal architecture and nervous system development. Neurite formation relies on the polarized remodelling of microtubules, which dynamically direct and reinforce cell shape, and provide tracks for cargo transport and force generation. Within neurons, microtubule behaviour and structure are tightly controlled by an array of regulatory factors. Although microtubule regulation in the later stages of axon development is relatively well understood, how microtubules are regulated during neurite initiation is rarely examined. Here, we discuss how factors that direct microtubule growth, remodelling, stability and positioning influence neurite formation. In addition, we consider microtubule organization by the centrosome and modulation by the actin and intermediate filament networks to provide an up-to-date picture of this vital stage in neuronal development.
Collapse
Affiliation(s)
- Victoria E Higgs
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Raman M Das
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
4
|
Khetan N, Athale CA. Aster swarming by symmetry breaking of cortical dynein transport and coupling kinesins. SOFT MATTER 2020; 16:8554-8564. [PMID: 32840555 DOI: 10.1039/d0sm01086c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microtubule (MT) radial arrays or asters establish the internal topology of a cell by interacting with organelles and molecular motors. We proceed to understand the general pattern forming potential of aster-motor systems using a computational model of multiple MT asters interacting with motors in cellular confinement. In this model dynein motors are attached to the cell cortex and plus-ended motors resembling kinesin-5 diffuse in the cell interior. The introduction of 'noise' in the form of MT length fluctuations spontaneously results in the emergence of coordinated, achiral vortex-like rotation of asters. The coherence and persistence of rotation require a threshold density of both cortical dyneins and coupling kinesins, while the onset is diffusion-limited with relation to the cortical dynein mobility. The coordinated rotational motion emerges due to the resolution of a 'tug-of-war' of multiple cortical dynein motors bound to MTs of the same aster by 'noise' in the form of MT dynamic instability. This transient symmetry breaking is amplified by local coupling by kinesin-5 complexes. The lack of widespread aster rotation across cell types suggests that biophysical mechanisms that suppress such intrinsic dynamics may have evolved. This model is analogous to more general models of locally coupled self-propelled particles (SPP) that spontaneously undergo collective transport in the presence of 'noise' that have been invoked to explain swarming in birds and fish. However, the aster-motor system is distinct from SPP models with regard to the particle density and 'noise' dependence, providing a set of experimentally testable predictions for a novel sub-cellular pattern forming system.
Collapse
Affiliation(s)
- Neha Khetan
- Div. of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Chaitanya A Athale
- Div. of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
5
|
Burakov AV, Nadezhdina ES. Centering and Shifting of Centrosomes in Cells. Cells 2020; 9:E1351. [PMID: 32485978 PMCID: PMC7348834 DOI: 10.3390/cells9061351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Centrosomes have a nonrandom localization in the cells: either they occupy the centroid of the zone free of the actomyosin cortex or they are shifted to the edge of the cell, where their presence is justified from a functional point of view, for example, to organize additional microtubules or primary cilia. This review discusses centrosome placement options in cultured and in situ cells. It has been proven that the central arrangement of centrosomes is due mainly to the pulling microtubules forces developed by dynein located on the cell cortex and intracellular vesicles. The pushing forces from dynamic microtubules and actomyosin also contribute, although the molecular mechanisms of their action have not yet been elucidated. Centrosomal displacement is caused by external cues, depending on signaling, and is drawn through the redistribution of dynein, the asymmetrization of microtubules through the capture of their plus ends, and the redistribution of actomyosin, which, in turn, is associated with basal-apical cell polarization.
Collapse
Affiliation(s)
- Anton V. Burakov
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Elena S. Nadezhdina
- Institute of Protein Research of Russian Academy of Science, Pushchino, 142290 Moscow Region, Russia
| |
Collapse
|
6
|
Del Castillo U, Norkett R, Gelfand VI. Unconventional Roles of Cytoskeletal Mitotic Machinery in Neurodevelopment. Trends Cell Biol 2019; 29:901-911. [PMID: 31597609 DOI: 10.1016/j.tcb.2019.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
At first look, cell division and neurite formation seem to be two different, essential biological processes. However, both processes require extensive reorganization of the cytoskeleton, and especially microtubules. Remarkably, in recent years, independent work from several groups has shown that multiple cytoskeletal components previously considered specific for the mitotic machinery play important roles in neurite initiation and extension. In this review article, we describe how several cytoplasmic and mitotic microtubule motors, components of mitotic kinetochores, and cortical actin participate in reorganization of the microtubule network required to form and maintain axons and dendrites. The emerging similarities between these two biological processes will certainly generate new insights into the mechanisms generating the unique morphology of neurons.
Collapse
Affiliation(s)
- Urko Del Castillo
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Rosalind Norkett
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
Rao AN, Baas PW. Polarity Sorting of Microtubules in the Axon. Trends Neurosci 2018; 41:77-88. [PMID: 29198454 PMCID: PMC5801152 DOI: 10.1016/j.tins.2017.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/30/2017] [Accepted: 11/08/2017] [Indexed: 01/03/2023]
Abstract
A longstanding question in cellular neuroscience is how microtubules in the axon become organized with their plus ends out, a pattern starkly different from the mixed orientation of microtubules in vertebrate dendrites. Recent attention has focused on a mechanism called polarity sorting, in which microtubules of opposite orientation are spatially separated by molecular motor proteins. Here we discuss this mechanism, and conclude that microtubules are polarity sorted in the axon by cytoplasmic dynein but that additional factors are also needed. In particular, computational modeling and experimental evidence suggest that static crosslinking proteins are required to appropriately restrict microtubule movements so that polarity sorting by cytoplasmic dynein can occur in a manner unimpeded by other motor proteins.
Collapse
Affiliation(s)
- Anand N Rao
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Peter W Baas
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| |
Collapse
|
8
|
Craig EM, Yeung HT, Rao AN, Baas PW. Polarity sorting of axonal microtubules: a computational study. Mol Biol Cell 2017; 28:3271-3285. [PMID: 28978741 PMCID: PMC5687029 DOI: 10.1091/mbc.e17-06-0380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/23/2017] [Accepted: 09/20/2017] [Indexed: 11/11/2022] Open
Abstract
We present a computational model to test a "polarity sorting" mechanism for microtubule (MT) organization in developing axons. We simulate the motor-based axonal transport of short MTs to test the hypothesis that immobilized cytoplasmic dynein motors transport short MTs with their plus ends leading, so "mal-oriented" MTs with minus-end-out are transported toward the cell body while "correctly" oriented MTs are transported in the anterograde direction away from the soma. We find that dynein-based transport of short MTs can explain the predominately plus-end-out polarity pattern of axonal MTs but that transient attachments of plus-end-directed motor proteins and nonmotile cross-linker proteins are needed to explain the frequent pauses and occasional reversals observed in live-cell imaging of MT transport. Static cross-linkers increase the likelihood of a stalled "tug-of-war" between retrograde and anterograde forces on the MT, providing an explanation for the frequent pauses of short MTs and the immobility of longer MTs. We predict that inhibition of the proposed static cross-linker will produce disordered transport of short MTs and increased mobility of longer MTs. We also predict that acute inhibition of cytoplasmic dynein will disrupt the polarity sorting of MTs by increasing the likelihood of "incorrect" sorting of MTs by plus-end-directed motors.
Collapse
Affiliation(s)
- Erin M Craig
- Department of Physics, Central Washington University, Ellensburg, WA 98926
| | - Howard T Yeung
- Department of Physics, Central Washington University, Ellensburg, WA 98926
| | - Anand N Rao
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129
| |
Collapse
|
9
|
Mazel T. Crosstalk of cell polarity signaling pathways. PROTOPLASMA 2017; 254:1241-1258. [PMID: 28293820 DOI: 10.1007/s00709-017-1075-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Cell polarity, the asymmetric organization of cellular components along one or multiple axes, is present in most cells. From budding yeast cell polarization induced by pheromone signaling, oocyte polarization at fertilization to polarized epithelia and neuronal cells in multicellular organisms, similar mechanisms are used to determine cell polarity. Crucial role in this process is played by signaling lipid molecules, small Rho family GTPases and Par proteins. All these signaling circuits finally govern the cytoskeleton, which is responsible for oriented cell migration, cell shape changes, and polarized membrane and organelle trafficking. Thus, typically in the process of cell polarization, most cellular constituents become polarized, including plasma membrane lipid composition, ion concentrations, membrane receptors, and proteins in general, mRNA, vesicle trafficking, or intracellular organelles. This review gives a brief overview how these systems talk to each other both during initial symmetry breaking and within the signaling feedback loop mechanisms used to preserve the polarized state.
Collapse
Affiliation(s)
- Tomáš Mazel
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
- State Institute for Drug Control, Šrobárova 48, 100 41, Prague 10, Czech Republic.
| |
Collapse
|
10
|
Lu W, Gelfand VI. Moonlighting Motors: Kinesin, Dynein, and Cell Polarity. Trends Cell Biol 2017; 27:505-514. [PMID: 28284467 DOI: 10.1016/j.tcb.2017.02.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/22/2023]
Abstract
In addition to their well-known role in transporting cargoes in the cytoplasm, microtubule motors organize their own tracks - the microtubules. While this function is mostly studied in the context of cell division, it is essential for microtubule organization and generation of cell polarity in interphase cells. Kinesin-1, the most abundant microtubule motor, plays a role in the initial formation of neurites. This review describes the mechanism of kinesin-1-driven microtubule sliding and discusses its biological significance in neurons. Recent studies describing the interplay between kinesin-1 and cytoplasmic dynein in the translocation of microtubules are discussed. In addition, we evaluate recent work exploring the developmental regulation of microtubule sliding during axonal outgrowth and regeneration. Collectively, the discussed works suggest that sliding of interphase microtubules by motors is a novel force-generating mechanism that reorganizes the cytoskeleton and drives shape change and polarization.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 11-100, Chicago, IL 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 11-100, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
del Castillo U, Winding M, Lu W, Gelfand VI. Interplay between kinesin-1 and cortical dynein during axonal outgrowth and microtubule organization in Drosophila neurons. eLife 2015; 4:e10140. [PMID: 26615019 PMCID: PMC4739764 DOI: 10.7554/elife.10140] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/27/2015] [Indexed: 12/21/2022] Open
Abstract
In this study, we investigated how microtubule motors organize microtubules in Drosophila neurons. We showed that, during the initial stages of axon outgrowth, microtubules display mixed polarity and minus-end-out microtubules push the tip of the axon, consistent with kinesin-1 driving outgrowth by sliding antiparallel microtubules. At later stages, the microtubule orientation in the axon switches from mixed to uniform polarity with plus-end-out. Dynein knockdown prevents this rearrangement and results in microtubules of mixed orientation in axons and accumulation of microtubule minus-ends at axon tips. Microtubule reorganization requires recruitment of dynein to the actin cortex, as actin depolymerization phenocopies dynein depletion, and direct recruitment of dynein to the membrane bypasses the actin requirement. Our results show that cortical dynein slides ‘minus-end-out’ microtubules from the axon, generating uniform microtubule arrays. We speculate that differences in microtubule orientation between axons and dendrites could be dictated by differential activity of cortical dynein. DOI:http://dx.doi.org/10.7554/eLife.10140.001 Motor proteins can move along filaments called microtubules to transport proteins and other materials to different parts of the cell. Microtubules are “polar” filaments, meaning that they have two distinct ends that have different chemical properties. Motor proteins can only move along these filaments in one direction, for example, the kinesin motor proteins generally move toward the so-called “plus-end”, while dynein motors move in the opposite direction. A typical nerve cell (or neuron) is composed of a cell body, a long projection called an axon and many small branch-like structures called dendrites. Within the axon, the microtubules are arranged so that their plus-ends point outwards, but the microtubules in dendrites are arranged differently so that many minus-ends point outwards instead. This polarity is important for the neuron in deciding which proteins should be transported to axons, and which should go to the dendrites. However, it is not clear how these different microtubule arrangements are established. Here, del Castillo et al. used microscopy to study microtubules in the axons of fruit fly neurons. The experiments show that in the very early stages of neuron development, the axons contained microtubules of mixed polarity. However, by the later stages, the microtubules had become uniform with all the plus-ends directed outwards. Further experiments show that dynein is responsible for this organization as it pushes the minus-end-out microtubules out of the axons. Dynein uses a scaffold made of a protein called actin to attach to the inner surface of the cell and move the minus-end microtubules to the cell body of the neuron. Thus, del Castillo et al.’s findings reveal that these dynein motors are responsible for the polarity of microtubules in mature axons. The next challenge is to understand how dynein is attached to the actin scaffold and why it rearranges microtubules in axons, but not in dendrites. DOI:http://dx.doi.org/10.7554/eLife.10140.002
Collapse
Affiliation(s)
- Urko del Castillo
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Michael Winding
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
12
|
Heine P, Ehrlicher A, Käs J. Neuronal and metastatic cancer cells: Unlike brothers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3126-31. [DOI: 10.1016/j.bbamcr.2015.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022]
|
13
|
Abstract
Dyneins are a small class of molecular motors that bind to microtubules and walk toward their minus ends. They are essential for the transport and distribution of organelles, signaling complexes and cytoskeletal elements. In addition dyneins generate forces on microtubule arrays that power the beating of cilia and flagella, cell division, migration and growth cone motility. Classical approaches to the study of dynein function in axons involve the depletion of dynein, expression of mutant/truncated forms of the motor, or interference with accessory subunits. By necessity, these approaches require prolonged time periods for the expression or manipulation of cellular dynein levels. With the discovery of the ciliobrevins, a class of cell permeable small molecule inhibitors of dynein, it is now possible to acutely disrupt dynein both globally and locally. In this review, we briefly summarize recent work using ciliobrevins to inhibit dynein and discuss the insights ciliobrevins have provided about dynein function in various cell types with a focus on neurons. We temper this with a discussion of the need for studies that will elucidate the mechanism of action of ciliobrevin and as well as the need for experiments to further analyze the specificity of ciliobreviens for dynein. Although much remains to be learned about ciliobrevins, these small molecules are proving themselves to be valuable novel tools to assess the cellular functions of dynein.
Collapse
Affiliation(s)
- Douglas H Roossien
- Department of Cell and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Kyle E Miller
- Department of Integrative Biology, Michigan State University East Lansing, MI, USA
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine Philadelphia, PA, USA
| |
Collapse
|
14
|
Sadoul K. New explanations for old observations: marginal band coiling during platelet activation. J Thromb Haemost 2015; 13:333-46. [PMID: 25510620 DOI: 10.1111/jth.12819] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/07/2014] [Indexed: 11/26/2022]
Abstract
Blood platelets are tiny cell fragments derived from megakaryocytes. Their primary function is to control blood vessel integrity and ensure hemostasis if a vessel wall is damaged. Circulating quiescent platelets have a flat, discoid shape maintained by a circumferential microtubule bundle, called the marginal band (MB). In the case of injury platelets are activated and rapidly adopt a spherical shape due to microtubule motor-induced elongation and subsequent coiling of the MB. Platelet activation and shape change can be transient or become irreversible. This depends on the strength of the activation stimulus, which is translated into a cytoskeletal crosstalk between microtubules, their motors and the actomyosin cortex, ensuring stimulus-response coupling. Following microtubule motor-driven disc-to-sphere transition, a strong stimulus will lead to compression of the sphere through actomyosin cortex contraction. This will concentrate the granules in the center of the platelet and accelerate their exocytosis. Once granules are released, platelets have crossed the point of no return to irreversible activation. This review summarizes the current knowledge of the molecular mechanism leading to platelet shape change, with a special emphasis on microtubules, and refers to previously published observations, which have been essential for generating an integrated view of cytoskeletal rearrangements during platelet activation.
Collapse
Affiliation(s)
- K Sadoul
- University Grenoble Alpes, IAB, Grenoble, France; INSERM, IAB, Grenoble, France; CHU de Grenoble, IAB, Grenoble, France
| |
Collapse
|
15
|
Roossien DH, Lamoureux P, Miller KE. Cytoplasmic dynein pushes the cytoskeletal meshwork forward during axonal elongation. J Cell Sci 2014; 127:3593-602. [PMID: 24951117 DOI: 10.1242/jcs.152611] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During development, neurons send out axonal processes that can reach lengths hundreds of times longer than the diameter of their cell bodies. Recent studies indicate that en masse microtubule translocation is a significant mechanism underlying axonal elongation, but how cellular forces drive this process is unknown. Cytoplasmic dynein generates forces on microtubules in axons to power their movement through 'stop-and-go' transport, but whether these forces influence the bulk translocation of long microtubules embedded in the cytoskeletal meshwork has not been tested. Here, we use both function-blocking antibodies targeted to the dynein intermediate chain and the pharmacological dynein inhibitor ciliobrevin D to ask whether dynein forces contribute to en bloc cytoskeleton translocation. By tracking docked mitochondria as fiducial markers for bulk cytoskeleton movements, we find that translocation is reduced after dynein disruption. We then directly measure net force generation after dynein disruption and find a dramatic increase in axonal tension. Taken together, these data indicate that dynein generates forces that push the cytoskeletal meshwork forward en masse during axonal elongation.
Collapse
Affiliation(s)
- Douglas H Roossien
- Cell and Molecular Biology Program, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| | - Phillip Lamoureux
- Department of Zoology, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| | - Kyle E Miller
- Department of Zoology, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Abstract
Self-organization of dynamic microtubules via interactions with associated motors plays a critical role in spindle formation. The microtubule-based mechanisms underlying other aspects of cellular morphogenesis, such as the formation and development of protrusions from neuronal cells is less well understood. In a recent study, we investigated the molecular mechanism that underlies the massive reorganization of microtubules induced in non-neuronal cells by expression of the neuronal microtubule stabilizer MAP2c. In that study we directly observed cortical dynein complexes and how they affect the dynamic behavior of motile microtubules in living cells. We found that stationary dynein complexes transiently associate with motile microtubules near the cell cortex and that their rapid turnover facilitates efficient microtubule transport. Here, we discuss our findings in the larger context of cellular morphogenesis with specific focus on self-organizing principles from which cellular shape patterns such as the thin protrusions of neurons can emerge.
Collapse
Affiliation(s)
- Leif Dehmelt
- Department of Systemic Cell Biology; Max Planck Institute of Molecular Physiology; Dortmund, Germany; Fakultät für Chemie und Chemische Biologie; Dortmund University of Technology; Dortmund, Germany
| |
Collapse
|
17
|
Deák F. Neuronal vesicular trafficking and release in age-related cognitive impairment. J Gerontol A Biol Sci Med Sci 2014; 69:1325-30. [PMID: 24809352 DOI: 10.1093/gerona/glu061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aging is a common major risk factor for many neurological disorders resulting in cognitive impairment and neurodegeneration including Parkinson's and Alzheimer's diseases. Novel results from the fields of molecular neuroscience and aging research provide evidence for a link between decline of various cognitive, executive functions and changes in neuronal mechanisms of intracellular trafficking and regulated vesicle release processes in the aging nervous system. In this Perspective, we review these recent findings and formulate a hypothesis on how cargo delivery to the synapses and the release of neurotrophic factors may be involved in maintaining learning and memory capabilities during healthy aging and present examples on how defects of those disrupt normal cognition. We provide an overview of emerging new concepts and approaches that will significantly advance our understanding of the aging brain and pathophysiology of dementia. This knowledge will be instrumental in defining drug targets and designing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ferenc Deák
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center.
| |
Collapse
|