1
|
Nakamura R, Oyama T, Inokuchi M, Ishikawa S, Hirata M, Kawashima H, Ikeda H, Dobashi Y, Ooi A. Neural EGFL like 2 expressed in myoepithelial cells and suppressed breast cancer cell migration. Pathol Int 2021; 71:326-336. [PMID: 33657249 DOI: 10.1111/pin.13087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/13/2021] [Indexed: 11/30/2022]
Abstract
Breast tissue has a branching structure that contains double-layered cells, consisting primarily of luminal epithelial cells inside and myoepithelial cells outside. Ductal carcinoma in situ (DCIS) still has myoepithelial cells surrounding the cancer cells. However, myoepithelial cells disappear in invasive ductal carcinoma. In this study, we detected expression of neural EGFL like (NELL) 2 and one of its receptors, roundabout guidance receptor (ROBO) 3, in myoepithelial and luminal epithelial cells (respectively) in normal breast tissue. NELL2 also was expressed in myoepithelial cells surrounding the non-cancerous intraductal proliferative lesions and DCIS. However, the expression level and proportion of NELL2-positive cells in DCIS were lower than those in normal and non-cancerous intraductal proliferative lesions. ROBO3 expression was decreased in invasive ductal carcinoma compared to that in normal and non-cancerous intraductal proliferative lesions. An evaluation of NELL2's function in breast cancer cell lines demonstrated that full-length NELL2 suppressed cell adhesion and migration in vitro. In contrast, the N-terminal domain of NELL2 increased cell adhesion in the early phase and migration in vitro in some breast cancer cells. These results suggested that full-length NELL2 protein, when expressed in myoepithelial cells, might serve as an inhibitor of breast cancer cell migration.
Collapse
Affiliation(s)
- Ritsuko Nakamura
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Takeru Oyama
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Masafumi Inokuchi
- Department of Breast Surgery, Kanazawa University Hospital, Ishikawa, Japan.,Department of Breast and Endocrine Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Satoko Ishikawa
- Department of Breast Surgery, Kanazawa University Hospital, Ishikawa, Japan
| | - Miki Hirata
- Department of Breast Surgery, Kanazawa University Hospital, Ishikawa, Japan
| | - Hiroko Kawashima
- Radiology Division, Kanazawa University Hospital, Ishikawa, Japan
| | - Hiroko Ikeda
- Division of Diagnostic Pathology, Kanazawa University Hospital, Ishikawa, Japan
| | - Yoh Dobashi
- Department of Pathology, Saitama Medical Center, Jichi Medical University, Saitama, Japan.,Department of Pathology, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Akishi Ooi
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
2
|
Nakamoto C, Durward E, Horie M, Nakamoto M. Nell2 regulates the contralateral-versus-ipsilateral visual projection as a domain-specific positional cue. Development 2019; 146:dev.170704. [PMID: 30745429 DOI: 10.1242/dev.170704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023]
Abstract
In mammals with binocular vision, retinal ganglion cell (RGC) axons from each eye project to eye-specific domains in the contralateral and ipsilateral dorsal lateral geniculate nucleus (dLGN), underpinning disparity-based stereopsis. Although domain-specific axon guidance cues that discriminate contralateral and ipsilateral RGC axons have long been postulated as a key mechanism for development of the eye-specific retinogeniculate projection, the molecular nature of such cues has remained elusive. Here, we show that the extracellular glycoprotein Nell2 (neural epidermal growth factor-like-like 2) is expressed in the dorsomedial region of the dLGN, which ipsilateral RGC axons terminate in and contralateral axons avoid. In Nell2 mutant mice, contralateral RGC axons abnormally invaded the ipsilateral domain of the dLGN, and ipsilateral axons terminated in partially fragmented patches, forming a mosaic pattern of contralateral and ipsilateral axon-termination zones. In vitro, Nell2 exerted inhibitory effects on contralateral, but not ipsilateral, RGC axons. These results provide evidence that Nell2 acts as a domain-specific positional label in the dLGN that discriminates contralateral and ipsilateral RGC axons, and that it plays essential roles in the establishment of the eye-specific retinogeniculate projection.
Collapse
Affiliation(s)
- Chizu Nakamoto
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Elaine Durward
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Masato Horie
- Department of CNS Research, Otsuka Pharmaceutical, 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Masaru Nakamoto
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
3
|
Nakamura R, Oyama T, Tajiri R, Mizokami A, Namiki M, Nakamoto M, Ooi A. Expression and regulatory effects on cancer cell behavior of NELL1 and NELL2 in human renal cell carcinoma. Cancer Sci 2015; 106:656-64. [PMID: 25726761 PMCID: PMC4452169 DOI: 10.1111/cas.12649] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 02/07/2015] [Accepted: 02/25/2015] [Indexed: 12/27/2022] Open
Abstract
Neural epidermal growth factor-like like (NELL) 1 and 2 constitute a family of multimeric and multimodular extracellular glycoproteins. Although the osteogenic effects of NELL1 and functions of NELL2 in neural development have been reported, their expression and functions in cancer are largely unknown. In this study, we examined expression of NELL1 and NELL2 in renal cell carcinoma (RCC) using clinical specimens and cell lines. We show that, whereas NELL1 and NELL2 proteins are strongly expressed in renal tubules in non-cancerous areas of RCC specimens, their expression is significantly downregulated in cancerous areas. Silencing of NELL1 and NELL2 mRNA expression was also detected in RCC cell lines. Analysis of NELL1/2 promoter methylation status indicated that the CpG islands in the NELL1 and NELL2 genes are hypermethylated in RCC cell lines. NELL1 and NELL2 bind to RCC cells, suggesting that these cells express a receptor for NELL1 and NELL2 that can transduce signals. Furthermore, we found that both NELL1 and NELL2 inhibit RCC cell migration, and NELL1 further inhibits RCC cell adhesion. These results suggest that silencing of NELL gene expression by promoter hypermethylation plays roles in RCC progression by affecting cancer cell behavior.
Collapse
Affiliation(s)
- Ritsuko Nakamura
- Department of Molecular and Cellular Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takeru Oyama
- Department of Molecular and Cellular Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ryosuke Tajiri
- Department of Molecular and Cellular Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Atsushi Mizokami
- Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Mikio Namiki
- Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masaru Nakamoto
- Aberdeen Developmental Biology Group, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Akishi Ooi
- Department of Molecular and Cellular Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
4
|
Abstract
The visual system is beautifully crafted to transmit information of the external world to visual processing and cognitive centers in the brain. For visual information to be relayed to the brain, a series of axon pathfinding events must take place to ensure that the axons of retinal ganglion cells, the only neuronal cell type in the retina that sends axons out of the retina, find their way out of the eye to connect with targets in the brain. In the past few decades, the power of molecular and genetic tools, including the generation of genetically manipulated mouse lines, have multiplied our knowledge about the molecular mechanisms involved in the sculpting of the visual system. Here, we review major advances in our understanding of the mechanisms controlling the differentiation of RGCs, guidance of their axons from the retina to the primary visual centers, and the refinement processes essential for the establishment of topographic maps and eye-specific axon segregation. Human disorders, such as albinism and achiasmia, that impair RGC axon growth and guidance and, thus, the establishment of a fully functioning visual system will also be discussed.
Collapse
Affiliation(s)
- Lynda Erskine
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Scotland, UK
| | - Eloisa Herrera
- Instituto de Neurosciencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
| |
Collapse
|