1
|
Bhattarai D, Lee SO, MacMillan-Crow LA, Parajuli N. Normal Proteasome Function Is Needed to Prevent Kidney Graft Injury during Cold Storage Followed by Transplantation. Int J Mol Sci 2024; 25:2147. [PMID: 38396827 PMCID: PMC10888692 DOI: 10.3390/ijms25042147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Kidney transplantation is the preferred treatment for end-stage kidney disease (ESKD). However, there is a shortage of transplantable kidneys, and donor organs can be damaged by necessary cold storage (CS). Although CS improves the viability of kidneys from deceased donors, prolonged CS negatively affects transplantation outcomes. Previously, we reported that renal proteasome function decreased after rat kidneys underwent CS followed by transplantation (CS + Tx). Here, we investigated the mechanism underlying proteasome dysfunction and the role of the proteasome in kidney graft outcome using a rat model of CS + Tx. We found that the key proteasome subunits β5, α3, and Rpt6 are modified, and proteasome assembly is impaired. Specifically, we detected the modification and aggregation of Rpt6 after CS + Tx, and Rpt6 modification was reversed when renal extracts were treated with protein phosphatases. CS + Tx kidneys also displayed increased levels of nitrotyrosine, an indicator of peroxynitrite (a reactive oxygen species, ROS), compared to sham. Because the Rpt6 subunit appeared to aggregate, we investigated the effect of CS + Tx-mediated ROS (peroxynitrite) generation on renal proteasome assembly and function. We treated NRK cells with exogenous peroxynitrite and evaluated PAC1 (proteasome assembly chaperone), Rpt6, and β5. Peroxynitrite induced a dose-dependent decrease in PAC1 and β5, but Rpt6 was not affected (protein level or modification). Finally, serum creatinine increased when we inhibited the proteasome in transplanted donor rat kidneys (without CS), recapitulating the effects of CS + Tx. These findings underscore the effects of CS + Tx on renal proteasome subunit dysregulation and also highlight the significance of proteasome activity in maintaining graft function following CS + Tx.
Collapse
Affiliation(s)
- Dinesh Bhattarai
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Seong-Ok Lee
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lee Ann MacMillan-Crow
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Zhang J, Fang S, Rong F, Jia M, Wang Y, Cui H, Hao P. PSMD4 drives progression of hepatocellular carcinoma via Akt/COX2 pathway and p53 inhibition. Hum Cell 2023; 36:1755-1772. [PMID: 37336868 DOI: 10.1007/s13577-023-00935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The ubiquitin-dependent proteolytic pathway is crucial for cellular regulation, including control of the cell cycle, differentiation, and apoptosis. Proteasome 26S Subunit Ubiquitin Receptor, Non-ATPase 4, (PSMD4) is a member of the ubiquitin proteasome family that is upregulated in multiple solid tumors, including hepatocellular carcinoma (HCC), and the existence of PSMD4 is associated with unfavorable prognosis. In this study, transcriptome sequencing of HCC tissues and non-tumor hepatic tissues from the public database Cancer Genome Atlas (TGCA) revealed a high expression of PSMD4. Additionally, PSMD4 loss in HCC cells suppressed the tumor development in mouse xenograft model. PSMD4, which is maintained by inflammatory factors secreted from tumor matrix cells, positively mediates cell growth and is associated with Akt/GSK-3β/ cyclooxygenase2 (COX2) pathway activation, inhibition of p53 promoter activity, and increased p53 degradation. However, the domain without the C-terminus (VWA+UIM1/2) sustained the activation of p53 transcription. Thus, our findings suggest that PSMD4 is involved in HCC tumor growth through COX2 expression and p53 downregulation. Therapeutic strategies targeting PSMD4 and its downstream effectors could be used for the treatment of PSMD4-abundant HCC patients.
Collapse
Affiliation(s)
- Jiamin Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Shu Fang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Fanghao Rong
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Miaomiao Jia
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Yunpeng Wang
- Department of General Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China.
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, Hebei, China.
| | - Peipei Hao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China.
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Legesse A, Kaushansky N, Braunstein I, Saad H, Lederkremer G, Navon A, Stanhill A. The role of RNF149 in the pre-emptive quality control substrate ubiquitination. Commun Biol 2023; 6:385. [PMID: 37031316 PMCID: PMC10082771 DOI: 10.1038/s42003-023-04763-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
Protein quality control is a process in which a protein's folding status is constantly monitored. Mislocalized proteins (MLP), are processed by the various quality control pathways, as they are often misfolded due to inappropriate cellular surroundings. Polypeptides that fail to translocate into the ER due to an inefficient signal peptide, mutations or ER stress are recognized by the pre-emptive ER associated quality control (pEQC) pathway and degraded by the 26 S proteasome. In this report we reveal the role of RNF149, a membrane bound E3 ligase in the ubiquitination of known pEQC substrates. We demonstrate its selective binding only to non-translocated proteins and its association with known pEQC components. Impairment in RNF149 function increases translocation flux into the ER and manifests in a myeloproliferative neoplasm (MPN) phenotype, a pathological condition associated with pEQC impairment. Finally, the dynamic localization of RNF149 may provide a molecular switch to regulate pEQC during ER stress.
Collapse
Affiliation(s)
- Aster Legesse
- Department of Natural and Life Sciences, Open University of Israel, Ra'anana, 43710, Israel
| | - Nathali Kaushansky
- Department of Molecular Cell Biology, Weizmann institute of Science, Rehovot, 7610001, Israel
| | - Ilana Braunstein
- Department of Biochemistry, Technion School of Medicine, Haifa, 31096, Israel
| | - Haddas Saad
- The Shmunis School of Biomedicine and Cancer Research, George Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Gerardo Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, George Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Ami Navon
- Department of Immunology and Regenerative Biology, Weizmann institute of Science, Rehovot, 7610001, Israel
| | - Ariel Stanhill
- Department of Natural and Life Sciences, Open University of Israel, Ra'anana, 43710, Israel.
| |
Collapse
|
4
|
Sparks A, Kelly CJ, Saville MK. Ubiquitin receptors play redundant roles in the proteasomal degradation of the p53 repressor MDM2. FEBS Lett 2022; 596:2746-2767. [PMID: 35735670 PMCID: PMC9796813 DOI: 10.1002/1873-3468.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 01/07/2023]
Abstract
Much remains to be determined about the participation of ubiquitin receptors in proteasomal degradation and their potential as therapeutic targets. Suppression of the ubiquitin receptor S5A/PSMD4/hRpn10 alone stabilises p53/TP53 but not the key p53 repressor MDM2. Here, we observed S5A and the ubiquitin receptors ADRM1/PSMD16/hRpn13 and RAD23A and B functionally overlap in MDM2 degradation. We provide further evidence that degradation of only a subset of ubiquitinated proteins is sensitive to S5A knockdown because ubiquitin receptor redundancy is commonplace. p53 can be upregulated by S5A modulation while degradation of substrates with redundant receptors is maintained. Our observations and analysis of Cancer Dependency Map (DepMap) screens show S5A depletion/loss substantially reduces cancer cell line viability. This and selective S5A dependency of proteasomal substrates make S5A a target of interest for cancer therapy.
Collapse
Affiliation(s)
| | - Christopher J. Kelly
- School of MedicineUniversity of DundeeUK,Institute of Infection, Immunity and InflammationUniversity of GlasgowUK
| | - Mark K. Saville
- School of MedicineUniversity of DundeeUK,Silver River EditingDundeeUK
| |
Collapse
|
5
|
An Arsenite Relay between PSMD14 and AIRAP Enables Revival of Proteasomal DUB Activity. Biomolecules 2021; 11:biom11091317. [PMID: 34572530 PMCID: PMC8465394 DOI: 10.3390/biom11091317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/21/2023] Open
Abstract
Maintaining 26S proteasome activity under diverse physiological conditions is a fundamental requirement in order to maintain cellular proteostasis. Several quantitative and qualitative mechanisms have evolved to ensure that ubiquitin–proteasome system (UPS) substrates do not accumulate and lead to promiscuous protein–protein interactions that, in turn, lead to cellular malfunction. In this report, we demonstrate that Arsenite Inducible Regulatory Particle-Associate Protein (AIRAP), previously reported as a proteasomal adaptor required for maintaining proteasomal flux during arsenite exposure, can directly bind arsenite molecules. We further show that arsenite inhibits Psmd14/Rpn11 metalloprotease deubiquitination activity by substituting zinc binding to the MPN/JAMM domain. The proteasomal adaptor AIRAP is able to directly relieve PSMD14/Rpn11 inhibition. A possible metal relay between arsenylated PSMD14/Rpn11 and AIRAP may serve as a cellular mechanism that senses proteasomal inhibition to restore Psmd14/Rpn11 activity.
Collapse
|
6
|
Kors S, Geijtenbeek K, Reits E, Schipper-Krom S. Regulation of Proteasome Activity by (Post-)transcriptional Mechanisms. Front Mol Biosci 2019; 6:48. [PMID: 31380390 PMCID: PMC6646590 DOI: 10.3389/fmolb.2019.00048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Intracellular protein synthesis, folding, and degradation are tightly controlled processes to ensure proper protein homeostasis. The proteasome is responsible for the degradation of the majority of intracellular proteins, which are often targeted for degradation via polyubiquitination. However, the degradation rate of proteins is also affected by the capacity of proteasomes to recognize and degrade these substrate proteins. This capacity is regulated by a variety of proteasome modulations including (1) changes in complex composition, (2) post-translational modifications, and (3) altered transcription of proteasomal subunits and activators. Various diseases are linked to proteasome modulation and altered proteasome function. A better understanding of these modulations may offer new perspectives for therapeutic intervention. Here we present an overview of these three proteasome modulating mechanisms to give better insight into the diversity of proteasomes.
Collapse
Affiliation(s)
- Suzan Kors
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Inhibition of PSMD4 blocks the tumorigenesis of hepatocellular carcinoma. Gene 2019; 702:66-74. [DOI: 10.1016/j.gene.2019.03.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
|
8
|
Chen X, Ebelle DL, Wright BJ, Sridharan V, Hooper E, Walters KJ. Structure of hRpn10 Bound to UBQLN2 UBL Illustrates Basis for Complementarity between Shuttle Factors and Substrates at the Proteasome. J Mol Biol 2019; 431:939-955. [PMID: 30664872 PMCID: PMC6389388 DOI: 10.1016/j.jmb.2019.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/07/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
The 26S proteasome is a highly complex 2.5-MDa molecular machine responsible for regulated protein degradation. Proteasome substrates are typically marked by ubiquitination for recognition at receptor sites contributed by Rpn1/S2/PSMD2, Rpn10/S5a, and Rpn13/Adrm1. Each receptor site can bind substrates directly by engaging conjugated ubiquitin chains or indirectly by binding to shuttle factors Rad23/HR23, Dsk2/PLIC/UBQLN, or Ddi1, which contain a ubiquitin-like domain (UBL) that adopts the ubiquitin fold. Previous structural studies have defined how each of the proteasome receptor sites binds to ubiquitin chains as well as some of the interactions that occur with the shuttle factors. Here, we define how hRpn10 binds to the UBQLN2 UBL domain, solving the structure of this complex by NMR, and determine affinities for each UIM region by a titration experiment. UBQLN2 UBL exhibits 25-fold stronger affinity for the N-terminal UIM-1 over UIM-2 of hRpn10. Moreover, we discover that UBQLN2 UBL is fine-tuned for the hRpn10 UIM-1 site over the UIM-2 site by taking advantage of the additional contacts made available through the longer UIM-1 helix. We also test hRpn10 versatility for the various ubiquitin chains to find less specificity for any particular linkage type compared to hRpn1 and hRpn13, as expected from the flexible linker region that connects the two UIMs; nonetheless, hRpn10 does exhibit some preference for K48 and K11 linkages. Altogether, these results provide new insights into the highly complex and complementary roles of the proteasome receptor sites and shuttle factors.
Collapse
Affiliation(s)
- Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Danielle L Ebelle
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Brandon J Wright
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Vinidhra Sridharan
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Evan Hooper
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Linganore High School, Frederick, MD 21701, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
9
|
The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 2016; 26:869-85. [PMID: 27444871 PMCID: PMC4973335 DOI: 10.1038/cr.2016.86] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 26S proteasome is a large, ∼2.5 MDa, multi-catalytic ATP-dependent protease complex that serves as the degrading arm of the ubiquitin system, which is the major pathway for regulated degradation of cytosolic, nuclear and membrane proteins in all eukaryotic organisms.
Collapse
|
10
|
Kragelund BB, Schenstrøm SM, Rebula CA, Panse VG, Hartmann-Petersen R. DSS1/Sem1, a Multifunctional and Intrinsically Disordered Protein. Trends Biochem Sci 2016; 41:446-459. [PMID: 26944332 DOI: 10.1016/j.tibs.2016.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/24/2023]
Abstract
DSS1/Sem1 is a versatile intrinsically disordered protein. Besides being a bona fide subunit of the 26S proteasome, DSS1 associates with other protein complexes, including BRCA2-RPA, involved in homologous recombination; the Csn12-Thp3 complex, involved in RNA splicing; the integrator, involved in transcription; and the TREX-2 complex, involved in nuclear export of mRNA and transcription elongation. As a subunit of the proteasome, DSS1 functions both in complex assembly and possibly as a ubiquitin receptor. Here, we summarise structural and functional aspects of DSS1/Sem1 with particular emphasis on its multifunctional and disordered properties. We suggest that DSS1/Sem1 can act as a polyanionic adhesive to prevent nonproductive interactions during construction of protein assemblies, uniquely employing different structures when associating with the diverse multisubunit complexes.
Collapse
Affiliation(s)
- Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Signe M Schenstrøm
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Caio A Rebula
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Vikram Govind Panse
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Rasmus Hartmann-Petersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
11
|
Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome. Biochem J 2015; 472:353-65. [PMID: 26450923 DOI: 10.1042/bj20150609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/07/2015] [Indexed: 11/17/2022]
Abstract
Despite the progress made in understanding the roles of proteasome polyubiquitin receptors, such as the subunits Rpn10 (regulatory particle non-ATPase 10) and Rpn13, and the transient interactors Rad23 (radiation sensitivity abnormal 23) and Dsk2 (dual-specificity protein kinase 2), the mechanisms involved in their regulation are virtually unknown. Rpn10, which is found in the cell in proteasome-bound and -unbound pools, interacts with Dsk2, and this interaction has been proposed to regulate the amount of Dsk2 that gains access to the proteasome. Rpn10 monoubiquitination has emerged as a conserved mechanism with a strong effect on Rpn10 function. In the present study, we show that functional yeast proteasomes have the capacity to associate and dissociate with Rpn10 and that Rpn10 monoubiquitination decreases the Rpn10-proteasome and Rpn10-Dsk2 associations. Remarkably, this process facilitates the formation of Dsk2-proteasomes in vivo. Therefore, Rpn10 monoubiquitination acts as mechanism that serves to switch the proteasome from an 'Rpn10 high/Dsk2 low' state to an 'Rpn10 low/Dsk2 high' state. Interestingly, Rpn10-ubiquitin, with an inactivated ubiquitin-interacting motif (UIM), and Dsk2(I45S), with an inactive ubiquitin-like domain (UBL), show temperature-dependent phenotypes with multiple functional interactions.
Collapse
|
12
|
An intrinsically disordered region of RPN10 plays a key role in restricting ubiquitin chain elongation in RPN10 monoubiquitination. Biochem J 2015. [DOI: 10.1042/bj20141571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The proteasomal ubiquitin receptor Rpn10 (regulatory particle non-ATPase 10) is monoubiquitinated by Rsp5 (reverses SPT-phenotype protein 5). We show that a disordered region flanking the ubiquitin-interacting motif of Rpn10 is required for restricting polyubiquitination in the process of Rpn10 monoubiquitination. A novel role of an unstructured protein domain in controlling ubiquitin chain elongation is proposed.
Collapse
|
13
|
Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD. Autophagic Degradation of the 26S Proteasome Is Mediated by the Dual ATG8/Ubiquitin Receptor RPN10 in Arabidopsis. Mol Cell 2015; 58:1053-66. [PMID: 26004230 DOI: 10.1016/j.molcel.2015.04.023] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/19/2015] [Accepted: 04/17/2015] [Indexed: 02/02/2023]
Abstract
Autophagic turnover of intracellular constituents is critical for cellular housekeeping, nutrient recycling, and various aspects of growth and development in eukaryotes. Here we show that autophagy impacts the other major degradative route involving the ubiquitin-proteasome system by eliminating 26S proteasomes, a process we termed proteaphagy. Using Arabidopsis proteasomes tagged with GFP, we observed their deposition into vacuoles via a route requiring components of the autophagy machinery. This transport can be initiated separately by nitrogen starvation and chemical or genetic inhibition of the proteasome, implying distinct induction mechanisms. Proteasome inhibition stimulates comprehensive ubiquitylation of the complex, with the ensuing proteaphagy requiring the proteasome subunit RPN10, which can simultaneously bind both ATG8 and ubiquitin. Collectively, we propose that Arabidopsis RPN10 acts as a selective autophagy receptor that targets inactive 26S proteasomes by concurrent interactions with ubiquitylated proteasome subunits/targets and lipidated ATG8 lining the enveloping autophagic membranes.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - Faqiang Li
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - David C Gemperline
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - Adam J Book
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA.
| |
Collapse
|