1
|
Rouya C, Yambire KF, Derbyshire ML, Alwaseem H, Tavazoie SF. Inter-organellar nucleic acid communication by a mitochondrial tRNA regulates nuclear metabolic transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558912. [PMID: 37790361 PMCID: PMC10542527 DOI: 10.1101/2023.09.21.558912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Efficient communication between mitochondria and the nucleus underlies homoeostatic metabolic control, though the involved mitochondrial factors and their mechanisms are poorly defined. Here, we report the surprising detection of multiple mitochondrial-derived transfer RNAs (mito-tRNAs) within the nuclei of human cells. Focused studies of nuclear-transported mito-tRNA-asparagine (mtAsn) revealed that its cognate charging enzyme (NARS2) is also present in the nucleus. MtAsn promoted interaction of NARS2 with histone deacetylase 2 (HDAC2), and repressed HDAC2 association with specific chromatin loci. Perturbation of this axis using antisense oligonucleotides promoted nucleotide biogenesis and enhanced breast cancer growth, and RNA and nascent transcript sequencing demonstrated specific alterations in the transcription of nuclear genes. These findings uncover nucleic-acid mediated communication between two organelles and the existence of a machinery for nuclear gene regulation by a mito-tRNA that restricts tumor growth through metabolic control. Highlights Multiple mitochondrial-derived tRNAs are detected in human cell nucleiMtAsn promotes binding between NARS2 and HDAC2Metabolic alterations driven by mtAsn impact cell proliferationMtAsn inhibition releases HDAC2 to bind and transcriptionally regulate multiple nuclear genes.
Collapse
|
2
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
3
|
Irvali D, Schlottmann FP, Muralidhara P, Nadelson I, Kleemann K, Wood NE, Doncic A, Ewald JC. When yeast cells change their mind: cell cycle "Start" is reversible under starvation. EMBO J 2023; 42:e110321. [PMID: 36420556 PMCID: PMC9841329 DOI: 10.15252/embj.2021110321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic cells decide in late G1 phase of the cell cycle whether to commit to another round of division. This point of cell cycle commitment is termed "Restriction Point" in mammals and "Start" in the budding yeast Saccharomyces cerevisiae. At Start, yeast cells integrate multiple signals such as pheromones and nutrients, and will not pass Start if nutrients are lacking. However, how cells respond to nutrient depletion after the Start decision remains poorly understood. Here, we analyze how post-Start cells respond to nutrient depletion, by monitoring Whi5, the cell cycle inhibitor whose export from the nucleus determines Start. Surprisingly, we find that cells that have passed Start can re-import Whi5 into the nucleus. In these cells, the positive feedback loop activating G1/S transcription is interrupted, and the Whi5 repressor re-binds DNA. Cells which re-import Whi5 become again sensitive to mating pheromone, like pre-Start cells, and CDK activation can occur a second time upon replenishment of nutrients. These results demonstrate that upon starvation, the commitment decision at Start can be reversed. We therefore propose that cell cycle commitment in yeast is a multi-step process, similar to what has been suggested for mammalian cells.
Collapse
Affiliation(s)
- Deniz Irvali
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Fabian P Schlottmann
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | | | - Iliya Nadelson
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Katja Kleemann
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - N Ezgi Wood
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Doncic
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer C Ewald
- Interfaculty Institute of Cell Biology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
4
|
Chatterjee K, Hopper AK. In Vivo Cross-Linking and Co-Immunoprecipitation Procedure to Analyze Nuclear tRNA Export Complexes in Yeast Cells. Methods Mol Biol 2023; 2666:115-136. [PMID: 37166661 PMCID: PMC10370246 DOI: 10.1007/978-1-0716-3191-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
tRNAs are small noncoding RNAs that are predominantly known for their roles in protein synthesis and also participate in numerous other functions ranging from retroviral replication to apoptosis. In eukaryotic cells, all tRNAs move bidirectionally, shuttling between the nucleus and the cytoplasm. Bidirectional nuclear-cytoplasmic tRNA trafficking requires a complex set of conserved proteins. Here, we describe an in vivo biochemical methodology in Saccharomyces cerevisiae to assess the ability of proteins implicated in tRNA nuclear export to form nuclear export complexes with tRNAs. This method employs tagged putative tRNA nuclear exporter proteins and co-immunoprecipitation of tRNA-exporter complexes using antibody-conjugated magnetic beads. Because the interaction between nuclear exporters and tRNAs may be transient, this methodology employs strategies to effectively trap tRNA-protein complexes in vivo. This pull-down method can be used to verify and characterize candidate proteins and their potential interactors implicated in tRNA nuclear-cytoplasmic trafficking.
Collapse
Affiliation(s)
- Kunal Chatterjee
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
- Department of Biology, Wittenberg University, Springfield, OH, USA.
| | - Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Chatterjee K, Marshall WA, Hopper AK. Three tRNA nuclear exporters in S. cerevisiae: parallel pathways, preferences, and precision. Nucleic Acids Res 2022; 50:10140-10152. [PMID: 36099418 PMCID: PMC9508810 DOI: 10.1093/nar/gkac754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
tRNAs that are transcribed in the nucleus are exported to the cytoplasm to perform their iterative essential function in translation. However, the complex set of tRNA post-transcriptional processing and subcellular trafficking steps are not completely understood. In particular, proteins involved in tRNA nuclear export remain unknown since the canonical tRNA nuclear exportin, Los1/Exportin-t, is unessential in all tested organisms. We previously reported that budding yeast Mex67-Mtr2, a mRNA nuclear exporter, co-functions with Los1 in tRNA nuclear export. Here we employed in vivo co-purification of tRNAs with endogenously expressed nuclear exporters to document that Crm1 also is a bona fide tRNA nuclear exporter. We document that Los1, Mex67-Mtr2 and Crm1 possess individual tRNA preferences for forming nuclear export complexes with members of the 10 families of intron-containing pre-tRNAs. Remarkably, Mex67-Mtr2, but not Los1 or Crm1, is error-prone, delivering tRNAs to the cytoplasm prior to 5′ leader removal. tRNA retrograde nuclear import functions to monitor the aberrant leader-containing spliced tRNAs, returning them to the nucleus where they are degraded by 3′ to 5′ exonucleases. Overall, our work identifies a new tRNA nuclear exporter, uncovers exporter preferences for specific tRNA families, and documents contribution of tRNA nuclear import to tRNA quality control.
Collapse
Affiliation(s)
- Kunal Chatterjee
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43235, USA.,Center for RNA Biology, Ohio State University, Columbus, OH 43235, USA
| | - William A Marshall
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43235, USA
| | - Anita K Hopper
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43235, USA.,Center for RNA Biology, Ohio State University, Columbus, OH 43235, USA
| |
Collapse
|
6
|
Schwenzer H, Jühling F, Chu A, Pallett LJ, Baumert TF, Maini M, Fassati A. Oxidative Stress Triggers Selective tRNA Retrograde Transport in Human Cells during the Integrated Stress Response. Cell Rep 2020; 26:3416-3428.e5. [PMID: 30893612 PMCID: PMC6426654 DOI: 10.1016/j.celrep.2019.02.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 01/05/2023] Open
Abstract
In eukaryotes, tRNAs are transcribed in the nucleus and exported to the cytosol, where they deliver amino acids to ribosomes for protein translation. This nuclear-cytoplasmic movement was believed to be unidirectional. However, active shuttling of tRNAs, named tRNA retrograde transport, between the cytosol and nucleus has been discovered. This pathway is conserved in eukaryotes, suggesting a fundamental function; however, little is known about its role in human cells. Here we report that, in human cells, oxidative stress triggers tRNA retrograde transport, which is rapid, reversible, and selective for certain tRNA species, mostly with shorter 3′ ends. Retrograde transport of tRNASeC, which promotes translation of selenoproteins required to maintain homeostatic redox levels in cells, is highly efficient. tRNA retrograde transport is regulated by the integrated stress response pathway via the PERK-REDD1-mTOR axis. Thus, we propose that tRNA retrograde transport is part of the cellular response to oxidative stress. Oxidative stress triggers nuclear import of cytoplasmic tRNAs Import is selective for certain tRNAs Import requires activation of the unfolded protein response and inhibition of mTOR via REDD1 tRNA nuclear import is a component of the integrated stress response
Collapse
Affiliation(s)
- Hagen Schwenzer
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK
| | - Frank Jühling
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 2 Université de Strasbourg, 67000 Strasbourg, France
| | - Alexander Chu
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK
| | - Laura J Pallett
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK
| | - Thomas F Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 2 Université de Strasbourg, 67000 Strasbourg, France; Nouvel Hôpital Civil, Institut Hospitalo-Universitaire, 67000 Strasbourg, France
| | - Mala Maini
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK
| | - Ariberto Fassati
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK.
| |
Collapse
|
7
|
Absence of AfuXpot, the yeast Los1 homologue, limits Aspergillus fumigatus growth under amino acid deprived condition. World J Microbiol Biotechnol 2020; 36:28. [PMID: 32002680 DOI: 10.1007/s11274-020-2805-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
In Saccharomyces cerevisiae, los1 encodes a nuclear tRNA exporter. Despite the non-essentiality, the deletion of los1 has been shown to extend replicative life span in yeast. Here, we characterized AfuXpot, the los1 homologue in human pathogen Aspergillus fumigatus and found that it is continuously expressed during fungal growth. Microscopic examination of an AfuXpot-GFP-expressing transformant confirmed the nuclear localization of the fusion protein. The targeted gene deletion affirmed the non-essential role of AfuXpot in hyphal growth and sporulation. However, the growth of the deletion mutant was affected by amino acid, but not glucose, deprivation. The susceptibility of the deletant strain to protein and DNA/RNA synthesis inhibitors was also altered. Using bioinformatics tools, some transcription factor binding sites were predicted in AfuXpot promoter. Expression analyses of potential AfuXpot-interacting genes showed a marked down-regulation of sfp1 and mtr10 homologues in ΔAfuXpot strain. Our data demonstrates some conserved aspects of AfuXpot as a tRNA exporter in A. fumigatus.
Collapse
|
8
|
Tuorto F, Parlato R. rRNA and tRNA Bridges to Neuronal Homeostasis in Health and Disease. J Mol Biol 2019; 431:1763-1779. [PMID: 30876917 DOI: 10.1016/j.jmb.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Dysregulation of protein translation is emerging as a unifying mechanism in the pathogenesis of many neuronal disorders. Ribosomal RNA (rRNA) and transfer RNA (tRNA) are structural molecules that have complementary and coordinated functions in protein synthesis. Defects in both rRNAs and tRNAs have been described in mammalian brain development, neurological syndromes, and neurodegeneration. In this review, we present the molecular mechanisms that link aberrant rRNA and tRNA transcription, processing and modifications to translation deficits, and neuropathogenesis. We also discuss the interdependence of rRNA and tRNA biosynthesis and how their metabolism brings together proteotoxic stress and impaired neuronal homeostasis.
Collapse
Affiliation(s)
- Francesca Tuorto
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| | - Rosanna Parlato
- Institute of Applied Physiology, University of Ulm, Albert Einstein Allee 11, 89081 Ulm, Germany; Institute of Anatomy and Cell Biology, Medical Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Hopper AK, Nostramo RT. tRNA Processing and Subcellular Trafficking Proteins Multitask in Pathways for Other RNAs. Front Genet 2019; 10:96. [PMID: 30842788 PMCID: PMC6391926 DOI: 10.3389/fgene.2019.00096] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/29/2019] [Indexed: 01/28/2023] Open
Abstract
This article focuses upon gene products that are involved in tRNA biology, with particular emphasis upon post-transcriptional RNA processing and nuclear-cytoplasmic subcellular trafficking. Rather than analyzing these proteins solely from a tRNA perspective, we explore the many overlapping functions of the processing enzymes and proteins involved in subcellular traffic. Remarkably, there are numerous examples of conserved gene products and RNP complexes involved in tRNA biology that multitask in a similar fashion in the production and/or subcellular trafficking of other RNAs, including small structured RNAs such as snRNA, snoRNA, 5S RNA, telomerase RNA, and SRP RNA as well as larger unstructured RNAs such as mRNAs and RNA-protein complexes such as ribosomes. Here, we provide examples of steps in tRNA biology that are shared with other RNAs including those catalyzed by enzymes functioning in 5' end-processing, pseudoU nucleoside modification, and intron splicing as well as steps regulated by proteins functioning in subcellular trafficking. Such multitasking highlights the clever mechanisms cells employ for maximizing their genomes.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| | - Regina T Nostramo
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Jawaid A, Khan R, Polymenidou M, Schulz PE. Disease-modifying effects of metabolic perturbations in ALS/FTLD. Mol Neurodegener 2018; 13:63. [PMID: 30509290 PMCID: PMC6278047 DOI: 10.1186/s13024-018-0294-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two fatal neurodegenerative disorders with considerable clinical, pathological and genetic overlap. Both disorders are characterized by the accumulation of pathological protein aggregates that contain a number of proteins, most notably TAR DNA binding protein 43 kDa (TDP-43). Surprisingly, recent clinical studies suggest that dyslipidemia, high body mass index, and type 2 diabetes mellitus are associated with better clinical outcomes in ALS. Moreover, ALS and FTLD patients have a significantly lower incidence of cardiovascular disease, supporting the idea that an unfavorable metabolic profile may be beneficial in ALS and FTLD. The two most widely studied ALS/FTLD models, super-oxide dismutase 1 (SOD1) and TAR DNA binding protein of 43 kDA (TDP-43), reveal metabolic dysfunction and a positive effect of metabolic strategies on disease onset and/or progression. In addition, molecular studies reveal a role for ALS/FTLD-associated proteins in the regulation of cellular and whole-body metabolism. Here, we systematically evaluate these observations and discuss how changes in cellular glucose/lipid metabolism may result in abnormal protein aggregations in ALS and FTLD, which may have important implications for new treatment strategies for ALS/FTLD and possibly other neurodegenerative conditions.
Collapse
Affiliation(s)
- Ali Jawaid
- Laboratory of Neuroepigenetics, Brain Research Institute, University of Zurich (UZH)/ Swiss Federal Institute of Technology (ETH), Winterthurerstr. 190, 8057, Zurich, Switzerland. .,Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, Pakistan.
| | - Romesa Khan
- Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | | | - Paul E Schulz
- Department of Neurology, The McGovern Medical School of UT Health, Houston, TX, USA
| |
Collapse
|
11
|
Chatterjee K, Nostramo RT, Wan Y, Hopper AK. tRNA dynamics between the nucleus, cytoplasm and mitochondrial surface: Location, location, location. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:373-386. [PMID: 29191733 PMCID: PMC5882565 DOI: 10.1016/j.bbagrm.2017.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 01/20/2023]
Abstract
Although tRNAs participate in the essential function of protein translation in the cytoplasm, tRNA transcription and numerous processing steps occur in the nucleus. This subcellular separation between tRNA biogenesis and function requires that tRNAs be efficiently delivered to the cytoplasm in a step termed "primary tRNA nuclear export". Surprisingly, tRNA nuclear-cytoplasmic traffic is not unidirectional, but, rather, movement is bidirectional. Cytoplasmic tRNAs are imported back to the nucleus by the "tRNA retrograde nuclear import" step which is conserved from budding yeast to vertebrate cells and has been hijacked by viruses, such as HIV, for nuclear import of the viral reverse transcription complex in human cells. Under appropriate environmental conditions cytoplasmic tRNAs that have been imported into the nucleus return to the cytoplasm via the 3rd nuclear-cytoplasmic shuttling step termed "tRNA nuclear re-export", that again is conserved from budding yeast to vertebrate cells. We describe the 3 steps of tRNA nuclear-cytoplasmic movements and their regulation. There are multiple tRNA nuclear export and import pathways. The different tRNA nuclear exporters appear to possess substrate specificity leading to the tantalizing possibility that the cellular proteome may be regulated at the level of tRNA nuclear export. Moreover, in some organisms, such as budding yeast, the pre-tRNA splicing heterotetrameric endonuclease (SEN), which removes introns from pre-tRNAs, resides on the cytoplasmic surface of the mitochondria. Therefore, we also describe the localization of the SEN complex to mitochondria and splicing of pre-tRNA on mitochondria, which occurs prior to the participation of tRNAs in protein translation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Kunal Chatterjee
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Regina T Nostramo
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Yao Wan
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Anita K Hopper
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States.
| |
Collapse
|
12
|
Chatterjee K, Majumder S, Wan Y, Shah V, Wu J, Huang HY, Hopper AK. Sharing the load: Mex67-Mtr2 cofunctions with Los1 in primary tRNA nuclear export. Genes Dev 2017; 31:2186-2198. [PMID: 29212662 PMCID: PMC5749166 DOI: 10.1101/gad.305904.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
Here, Chatterjee et al. describe a novel tRNA nuclear export pathway that functions in parallel to the tRNA nuclear exporter Los1. They provide molecular, genetic, cytological, and biochemical evidence that the Mex67–Mtr2 (TAP–p15) heterodimer, best characterized for its essential role in mRNA nuclear export, cofunctions with Los1 in tRNA nuclear export. Eukaryotic transfer RNAs (tRNAs) are exported from the nucleus, their site of synthesis, to the cytoplasm, their site of function for protein synthesis. The evolutionarily conserved β-importin family member Los1 (Exportin-t) has been the only exporter known to execute nuclear export of newly transcribed intron-containing pre-tRNAs. Interestingly, LOS1 is unessential in all tested organisms. As tRNA nuclear export is essential, we previously interrogated the budding yeast proteome to identify candidates that function in tRNA nuclear export. Here, we provide molecular, genetic, cytological, and biochemical evidence that the Mex67–Mtr2 (TAP–p15) heterodimer, best characterized for its essential role in mRNA nuclear export, cofunctions with Los1 in tRNA nuclear export. Inactivation of Mex67 or Mtr2 leads to rapid accumulation of end-matured unspliced tRNAs in the nucleus. Remarkably, merely fivefold overexpression of Mex67–Mtr2 can substitute for Los1 in los1Δ cells. Moreover, in vivo coimmunoprecipitation assays with tagged Mex67 document that the Mex67 binds tRNAs. Our data also show that tRNA exporters surprisingly exhibit differential tRNA substrate preferences. The existence of multiple tRNA exporters, each with different tRNA preferences, may indicate that the proteome can be regulated by tRNA nuclear export. Thus, our data show that Mex67–Mtr2 functions in primary nuclear export for a subset of yeast tRNAs.
Collapse
Affiliation(s)
- Kunal Chatterjee
- The Ohio State University Comprehensive Cancer Research Center, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shubhra Majumder
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yao Wan
- The Ohio State University Comprehensive Cancer Research Center, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Vijay Shah
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jingyan Wu
- The Ohio State University Comprehensive Cancer Research Center, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hsiao-Yun Huang
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
13
|
Lord CL, Ospovat O, Wente SR. Nup100 regulates Saccharomyces cerevisiae replicative life span by mediating the nuclear export of specific tRNAs. RNA (NEW YORK, N.Y.) 2017; 23:365-377. [PMID: 27932586 PMCID: PMC5311497 DOI: 10.1261/rna.057612.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of Saccharomyces cerevisiae We previously reported that deletion of the nonessential gene NUP100 increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in nup100Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of nup100Δ mutants. Protein levels of the transcription factor Gcn4 are increased when NUP100 is deleted, and GCN4 is required for the elevated life spans of nup100Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in nup100Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of nup100Δ and msn5Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the S. cerevisiae life span.
Collapse
Affiliation(s)
- Christopher L Lord
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37240, USA
| | - Ophir Ospovat
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37240, USA
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37240, USA
| |
Collapse
|
14
|
Abstract
Protein translation is one of the most energetically demanding processes for a cell to undertake. Changes in the nutrient environment may result in conditions that cannot support the rates of translation required for cell proliferation. As such, a cell must monitor its metabolic state to determine which mRNAs to translate into protein. How the various RNA species that participate in translation might relay information about metabolic state to regulate this process is not well understood. In this review, we discuss emerging examples of the influence of metabolism on aspects of RNA biology. We discuss how metabolic state impacts the localization and fate of different RNA species, as well as how nutrient cues can impact post-transcriptional modifications of RNA to regulate their functions in the control of translation.
Collapse
Affiliation(s)
- Chien-Der Lee
- a Department of Biochemistry , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Benjamin P Tu
- a Department of Biochemistry , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
15
|
Ohayon D, De Chiara A, Chapuis N, Candalh C, Mocek J, Ribeil JA, Haddaoui L, Ifrah N, Hermine O, Bouillaud F, Frachet P, Bouscary D, Witko-Sarsat V. Cytoplasmic proliferating cell nuclear antigen connects glycolysis and cell survival in acute myeloid leukemia. Sci Rep 2016; 6:35561. [PMID: 27759041 PMCID: PMC5069676 DOI: 10.1038/srep35561] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/26/2016] [Indexed: 01/03/2023] Open
Abstract
Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux.
Collapse
Affiliation(s)
- Delphine Ohayon
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| | - Alessia De Chiara
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| | - Nicolas Chapuis
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Hematology Department, Cochin Hospital, Assistance publique-Hôpitaux de Paris (APHP), Paris, France.,FILO: French Innovative Leukemia Organization (GOELAMS), CHU Bretonneau, TOURS France
| | - Céline Candalh
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| | - Julie Mocek
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| | - Jean-Antoine Ribeil
- Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Biotherapy Department, Necker Hospital, Paris, France
| | - Lamya Haddaoui
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,FILO: French Innovative Leukemia Organization (GOELAMS), CHU Bretonneau, TOURS France
| | - Norbert Ifrah
- FILO: French Innovative Leukemia Organization (GOELAMS), CHU Bretonneau, TOURS France.,Hematology Department CHU &UMR INSERM U892/CNRS6299, Université d'Angers, France
| | - Olivier Hermine
- Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Hematology Department, Necker Hospital Assistance publique-Hôpitaux de Paris (APHP), France.,INSERM UMR1163, CNRS ERL 8254, Institut Imagine, Paris, France
| | - Frédéric Bouillaud
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France
| | - Philippe Frachet
- Institut de Biologie Structurale, Centre Etude Atomique, Grenoble, France.,Université Grenoble Alpes, CNRS, UMR 5075, Grenoble, France
| | - Didier Bouscary
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Hematology Department, Cochin Hospital, Assistance publique-Hôpitaux de Paris (APHP), Paris, France.,FILO: French Innovative Leukemia Organization (GOELAMS), CHU Bretonneau, TOURS France
| | - Véronique Witko-Sarsat
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| |
Collapse
|
16
|
Domanska A, Kaminska J. Role of Rsp5 ubiquitin ligase in biogenesis of rRNA, mRNA and tRNA in yeast. RNA Biol 2016; 12:1265-74. [PMID: 26403176 DOI: 10.1080/15476286.2015.1094604] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Rsp5 ubiquitin ligase is required for ubiquitination of a wide variety of proteins involved in essential processes. Rsp5 was shown to be involved in regulation of lipid biosynthesis, intracellular trafficking of proteins, response to various stresses, and many other processes. In this article, we provide a comprehensive review of the nuclear and cytoplasmic functions of Rsp5 with a focus on biogenesis of different RNAs. We also briefly describe the participation of Rsp5 in the regulation of the RNA polymerase II complex, and its potential role in the regulation of other RNA polymerases. Moreover, we emphasize the function of Rsp5 in the coordination of the different steps of rRNA, mRNA and tRNA metabolism in the context of protein biosynthesis. Finally, we highlight the involvement of Rsp5 in controlling diverse cellular mechanisms at multiple levels and in adaptation of the cell to changing growth conditions.
Collapse
Affiliation(s)
- Anna Domanska
- a Institute of Biochemistry and Biophysics, Polish Academy of Sciences ; Warsaw , Poland
| | - Joanna Kaminska
- a Institute of Biochemistry and Biophysics, Polish Academy of Sciences ; Warsaw , Poland
| |
Collapse
|
17
|
Huang HY, Hopper AK. Multiple Layers of Stress-Induced Regulation in tRNA Biology. Life (Basel) 2016; 6:life6020016. [PMID: 27023616 PMCID: PMC4931453 DOI: 10.3390/life6020016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 01/28/2023] Open
Abstract
tRNAs are the fundamental components of the translation machinery as they deliver amino acids to the ribosomes during protein synthesis. Beyond their essential function in translation, tRNAs also function in regulating gene expression, modulating apoptosis and several other biological processes. There are multiple layers of regulatory mechanisms in each step of tRNA biogenesis. For example, tRNA 3′ trailer processing is altered upon nutrient stress; tRNA modification is reprogrammed under various stresses; nuclear accumulation of tRNAs occurs upon nutrient deprivation; tRNA halves accumulate upon oxidative stress. Here we address how environmental stresses can affect nearly every step of tRNA biology and we describe the possible regulatory mechanisms that influence the function or expression of tRNAs under stress conditions.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Biology, Indiana University, 915 E third St., Myers 300, Bloomington, IN 47405, USA.
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Vuković LD, Jevtić P, Edens LJ, Levy DL. New Insights into Mechanisms and Functions of Nuclear Size Regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:1-59. [PMID: 26940517 DOI: 10.1016/bs.ircmb.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear size is generally maintained within a defined range in a given cell type. Changes in cell size that occur during cell growth, development, and differentiation are accompanied by dynamic nuclear size adjustments in order to establish appropriate nuclear-to-cytoplasmic volume relationships. It has long been recognized that aberrations in nuclear size are associated with certain disease states, most notably cancer. Nuclear size and morphology must impact nuclear and cellular functions. Understanding these functional implications requires an understanding of the mechanisms that control nuclear size. In this review, we first provide a general overview of the diverse cellular structures and activities that contribute to nuclear size control, including structural components of the nucleus, effects of DNA amount and chromatin compaction, signaling, and transport pathways that impinge on the nucleus, extranuclear structures, and cell cycle state. We then detail some of the key mechanistic findings about nuclear size regulation that have been gleaned from a variety of model organisms. Lastly, we review studies that have implicated nuclear size in the regulation of cell and nuclear function and speculate on the potential functional significance of nuclear size in chromatin organization, gene expression, nuclear mechanics, and disease. With many fundamental cell biological questions remaining to be answered, the field of nuclear size regulation is still wide open.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America.
| |
Collapse
|
19
|
Yoshihisa T. Nucleocytoplasmic shuttling of tRNAs and implication of the cytosolic Hsp70 system in tRNA import. Nucleus 2015; 6:339-43. [PMID: 26280499 PMCID: PMC4915482 DOI: 10.1080/19491034.2015.1082696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
tRNAs, a class of non-coding RNAs essential for translation, are unique among cytosolic RNA species in that they shuttle between the nucleus and cytoplasm during their life. Although their export from the nucleus has been studied in detail, limited information on import machinery was available. Our group recently reported that Ssa2p, one of major cytosolic Hsp70s in Saccharomyces cerevisiae, acts as a crucial factor for tRNA import upon nutrient starvation. Ssa2p can bind tRNAs and a nucleoporin directly in an ATP-sensitive manner, suggesting that it acts as a nuclear import carrier for tRNAs, like importin-β proteins. In vitro assays revealed that Ssa2p binds tRNA specifically but has preference for loosely folded tRNAs. In this Extra View, these features of Ssa2p as a new import factor is discussed with other recent findings related to nucleocytoplasmic transport of tRNAs reported from other groups.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- a Graduate School of Life Science; University of Hyogo ; Ako-gun , Hyogo , Japan
| |
Collapse
|
20
|
Huang HY, Hopper AK. In vivo biochemical analyses reveal distinct roles of β-importins and eEF1A in tRNA subcellular traffic. Genes Dev 2015; 29:772-83. [PMID: 25838545 PMCID: PMC4387718 DOI: 10.1101/gad.258293.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Huang et al. developed in vivo β-importin complex co-IP assays to study the interactions of β-importins with tRNAs. Los1 (exportin-t) interacts with both unspliced and spliced tRNAs. In contrast, Msn5 (exportin-5) primarily interacts with spliced aminoacylated tRNAs. They demonstrate that Tef1/2 assembles with Msn5–tRNA complexes in a RanGTP-dependent manner. Bidirectional tRNA movement between the nucleus and the cytoplasm serves multiple biological functions. To gain a biochemical understanding of the mechanisms for tRNA subcellular dynamics, we developed in vivo β-importin complex coimmunoprecipitation (co-IP) assays using budding yeast. Our studies provide the first in vivo biochemical evidence that two β-importin family members, Los1 (exportin-t) and Msn5 (exportin-5), serve overlapping but distinct roles in tRNA nuclear export. Los1 assembles complexes with RanGTP and tRNA. Both intron-containing pre-tRNAs and spliced tRNAs, regardless of whether they are aminoacylated, assemble into Los1–RanGTP complexes, documenting that Los1 participates in both primary nuclear export and re-export of tRNAs to the cytoplasm. In contrast, β-importin Msn5 preferentially assembles with RanGTP and spliced, aminoacylated tRNAs, documenting its role in tRNA nuclear re-export. Tef1/2 (the yeast form of translation elongation factor 1α [eEF1A]) aids the specificity of Msn5 for aminoacylated tRNAs to form a quaternary complex consisting of Msn5, RanGTP, aminoacylated tRNA, and Tef1/2. Assembly and/or stability of this quaternary complex requires Tef1/2, thereby facilitating efficient re-export of aminoacylated tRNAs to the cytoplasm.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
21
|
Takano A, Kajita T, Mochizuki M, Endo T, Yoshihisa T. Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus. eLife 2015; 4:e04659. [PMID: 25853343 PMCID: PMC4432389 DOI: 10.7554/elife.04659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 04/05/2015] [Indexed: 01/31/2023] Open
Abstract
tRNAs are unique among various RNAs in that they shuttle between the nucleus and the cytoplasm, and their localization is regulated by nutrient conditions. Although nuclear export of tRNAs has been well documented, the import machinery is poorly understood. Here, we identified Ssa2p, a major cytoplasmic Hsp70 in Saccharomyces cerevisiae, as a tRNA-binding protein whose deletion compromises nuclear accumulation of tRNAs upon nutrient starvation. Ssa2p recognizes several structural features of tRNAs through its nucleotide-binding domain, but prefers loosely-folded tRNAs, suggesting that Ssa2p has a chaperone-like activity for RNAs. Ssa2p also binds Nup116, one of the yeast nucleoporins. Sis1p and Ydj1p, cytoplasmic co-chaperones for Ssa proteins, were also found to contribute to the tRNA import. These results unveil a novel function of the Ssa2p system as a tRNA carrier for nuclear import by a novel mode of substrate recognition. Such Ssa2p-mediated tRNA import likely contributes to quality control of cytosolic tRNAs.
Collapse
Affiliation(s)
- Akira Takano
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takuya Kajita
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Makoto Mochizuki
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Tohru Yoshihisa
- Graduate School of Life Science, University of Hyogo, Kobe, Japan
| |
Collapse
|