1
|
Sun Y, Hamlin AJ, Schwarzbauer JE. Fibronectin matrix assembly at a glance. J Cell Sci 2025; 138:jcs263834. [PMID: 40130407 PMCID: PMC12050093 DOI: 10.1242/jcs.263834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
The organization and mechanics of extracellular matrix (ECM) protein polymers determine tissue structure and function. Secreted ECM components are assembled into polymers via a cell-mediated process. The specific mechanisms that cells use for assembly are crucial for generating tissue-appropriate matrices. Fibronectin (FN) is a ubiquitous and abundant ECM protein that is assembled into a fibrillar matrix by a receptor-mediated process, and the FN matrix provides a foundation for incorporation of many other proteins into the ECM. In this Cell Science at a Glance article and the accompanying poster, we describe the domain organization of FN and the events that initiate and propagate a stable insoluble network of FN fibrils. We also discuss intracellular pathways that regulate FN assembly and the impact of changes in assembly on disease progression.
Collapse
Affiliation(s)
- Yu Sun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aaron J. Hamlin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
2
|
Kim C, Kang N, Min S, Thangam R, Lee S, Hong H, Kim K, Kim SY, Kim D, Rha H, Tag KR, Lee HJ, Singh N, Jeong D, Hwang J, Kim Y, Park S, Lee H, Kim T, Son SW, Park S, Karamikamkar S, Zhu Y, Hassani Najafabadi A, Chu Z, Sun W, Zhao P, Zhang K, Bian L, Song HC, Park SG, Kim JS, Lee SY, Ahn JP, Kim HK, Zhang YS, Kang H. Modularity-based mathematical modeling of ligand inter-nanocluster connectivity for unraveling reversible stem cell regulation. Nat Commun 2024; 15:10665. [PMID: 39715783 PMCID: PMC11666790 DOI: 10.1038/s41467-024-54557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
The native extracellular matrix is continuously remodeled to form complex interconnected network structures that reversibly regulate stem cell behaviors. Both regulation and understanding of its intricate dynamicity can help to modulate numerous cell behaviors. However, neither of these has yet been achieved due to the lack of designing and modeling such complex structures with dynamic controllability. Here we report modularity-based mathematical modeling of extracellular matrix-emulating ligand inter-cluster connectivity using the graph theory. Increasing anisotropy of magnetic nano-blockers proportionately disconnects arginine-glycine-aspartic acid ligand-to-ligand interconnections and decreases the number of ligand inter-cluster edges. This phenomenon deactivates stem cells, which can be partly activated by linearizing the nano-blockers. Remote cyclic elevation of high-anisotropy nano-blockers flexibly generates nano-gaps under the nano-blockers and augments the number of ligand inter-cluster edges. Subsequently, integrin-presenting stem cell infiltration is stimulated, which reversibly intensifies focal adhesion and mechanotransduction-driven differentiation both in vitro and in vivo. Designing and systemically modeling extracellular matrix-mimetic geometries opens avenues for unraveling dynamic cell-material interactions for tissue regeneration.
Collapse
Affiliation(s)
- Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Kanghyeon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Seong Yeol Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hyunji Rha
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Kyong-Ryol Tag
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyun-Jeong Lee
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Nem Singh
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Daun Jeong
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Jangsun Hwang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sangwoo Park
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hyesung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Taeeon Kim
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, Republic of Korea
| | - Sang Wook Son
- Department of Dermatology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | | | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PR China
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, PR China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, PR China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, PR China
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Sung-Gyu Park
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Sang-Yup Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jae-Pyoung Ahn
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hong-Kyu Kim
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA.
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea.
- Department of Future Convergence Materials, Korea University, Seoul, Republic of Korea.
- College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Tomer D, Arriagada C, Munshi S, Alexander BE, French B, Vedula P, Caorsi V, House A, Guvendiren M, Kashina A, Schwarzbauer JE, Astrof S. A new mechanism of fibronectin fibril assembly revealed by live imaging and super-resolution microscopy. J Cell Sci 2022; 135:jcs260120. [PMID: 35851804 PMCID: PMC9481930 DOI: 10.1242/jcs.260120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/11/2022] [Indexed: 08/27/2023] Open
Abstract
Fibronectin (Fn1) fibrils have long been viewed as continuous fibers composed of extended, periodically aligned Fn1 molecules. However, our live-imaging and single-molecule localization microscopy data are inconsistent with this traditional view and show that Fn1 fibrils are composed of roughly spherical nanodomains containing six to eleven Fn1 dimers. As they move toward the cell center, Fn1 nanodomains become organized into linear arrays, in which nanodomains are spaced with an average periodicity of 105±17 nm. Periodical Fn1 nanodomain arrays can be visualized between cells in culture and within tissues; they are resistant to deoxycholate treatment and retain nanodomain periodicity in the absence of cells. The nanodomain periodicity in fibrils remained constant when probed with antibodies recognizing distinct Fn1 epitopes or combinations of antibodies recognizing epitopes spanning the length of Fn1. Treatment with FUD, a peptide that binds the Fn1 N-terminus and disrupts Fn1 fibrillogenesis, blocked the organization of Fn1 nanodomains into periodical arrays. These studies establish a new paradigm of Fn1 fibrillogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Darshika Tomer
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical, and Health Sciences, 185 South Orange Ave, Newark, NJ 07103, USA
| | - Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical, and Health Sciences, 185 South Orange Ave, Newark, NJ 07103, USA
| | - Sudipto Munshi
- Center for Translational Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brianna E. Alexander
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical, and Health Sciences, 185 South Orange Ave, Newark, NJ 07103, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences. Cell Biology, Neuroscience and Physiology track, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Brenda French
- Center for Translational Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Pavan Vedula
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Andrew House
- Otto H. York Chemical and Materials Engineering, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Murat Guvendiren
- Otto H. York Chemical and Materials Engineering, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean E. Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical, and Health Sciences, 185 South Orange Ave, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Jamieson JJ, Lin Y, Malloy N, Soto D, Searson PC, Gerecht S. Hypoxia-induced blood-brain barrier dysfunction is prevented by pericyte-conditioned media via attenuated actomyosin contractility and claudin-5 stabilization. FASEB J 2022; 36:e22331. [PMID: 35476363 PMCID: PMC9060394 DOI: 10.1096/fj.202200010rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/11/2022]
Abstract
The blood-brain barrier (BBB) regulates molecular and cellular entry from the cerebrovasculature into the surrounding brain parenchyma. Many diseases of the brain are associated with dysfunction of the BBB, where hypoxia is a common stressor. However, the contribution of hypoxia to BBB dysfunction is challenging to study due to the complexity of the brain microenvironment. In this study, we used a BBB model with brain microvascular endothelial cells and pericytes differentiated from iPSCs to investigate the effect of hypoxia on barrier function. We found that hypoxia-induced barrier dysfunction is dependent upon increased actomyosin contractility and is associated with increased fibronectin fibrillogenesis. We propose a role for actomyosin contractility in mediating hypoxia-induced barrier dysfunction through modulation of junctional claudin-5. Our findings suggest pericytes may protect brain microvascular endothelial cells from hypoxic stresses and that pericyte-derived factors could be candidates for treatment of pathological barrier-forming tissues.
Collapse
Affiliation(s)
- John J Jamieson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - YingYu Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicholas Malloy
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Soto
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Duke University, Duke, North Carolina, USA
| |
Collapse
|
5
|
Bachmann M, Skripka A, Weißenbruch K, Wehrle-Haller B, Bastmeyer M. Phosphorylated paxillin and phosphorylated FAK constitute subregions within focal adhesions. J Cell Sci 2022; 135:275040. [PMID: 35343568 DOI: 10.1242/jcs.258764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/17/2022] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated adhesions are convergence points of multiple signaling pathways. Their inner structure and their diverse functions can be studied with super-resolution microscopy. Here, we examined the spatial organization within focal adhesion by analyzing several adhesion proteins with structured illumination microscopy (SIM). We found that phosphorylated paxillin (pPax) and phosphorylated focal adhesion kinase (pFAK) form spot-like, spatially defined clusters within adhesions in several cell lines and confirmed these findings with additional super-resolution techniques. These clusters showed a more regular separation from each other compared to more randomly distributed labels of general FAK or paxillin. Mutational analysis indicated that the active (open) FAK conformation is a prerequisite for the pattern formation of pFAK. Live-cell super-resolution imaging revealed that organization in clusters is preserved over time for FAK constructs; however, distance between clusters is dynamic for FAK, while paxillin is more stable. Combined, these data introduce spatial clusters of pPax and pFAK as substructures in adhesions and highlight the relevance of paxillin-FAK binding for establishing a regular substructure in focal adhesions.
Collapse
Affiliation(s)
- Michael Bachmann
- Department for Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Artiom Skripka
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Kai Weißenbruch
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Bernhard Wehrle-Haller
- Department for Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Martin Bastmeyer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Lam M, Falentin-Daudré C. Characterization of plasmatic proteins adsorption on poly(styrene sodium sulfonate) functionalized silicone surfaces. Biophys Chem 2022; 285:106804. [PMID: 35339945 DOI: 10.1016/j.bpc.2022.106804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Abstract
Proteins adsorption occurs spontaneously on biomaterial upon insertion within the body. The resulting protein layer influences biomaterial biocompatibility through enhanced bio-integration or, on the contrary, adverse reactions. Furthermore, upon adsorption, proteins can undergo modifications of their structure and, ultimately, their physicochemical properties and activity. Hence, the understanding of protein adsorption on implanted materials appears essential, as exemplified by silicone breast prostheses that might lead to serious health issues. Surface modifications with a bioactive polymer, poly(styrene sodium sulfonate)-polyNaSS, on a hydrophobic silicone surface that composes breast implants, have been successfully performed under UV irradiation by a radical surface polymerization. This strategy enhances cell biocompatibility and antibacterial features. Although detailed insights related to the mechanism are still scarce, polyNaSS is supposed to promote changes in the conformation and/or orientation of adsorbed plasma proteins, reducing the odd for a biofilm to form. The present work addresses more in-depth structural investigations of the adsorbed state of two plasma proteins: Bovine Serum Albumin (BSA), as a model protein, and fibronectin (FN), for its role in cell adhesion. Using Atomic force microscopy (AFM), we report that polyNaSS showed no significant impact on the BSA structure conversely to the FN one. However, imaging findings with AFM clearly outlined a change in the structural organization of FN, going from a nano fibrillar assembly with an average length of 130 nm to a globular one when the surface was grafted. Thus, it is highlighted that polyNaSS interacts specifically with FN. In addition, cell spreading assay of L929 fibroblasts on FN-coated surfaces with optical microscopy indicated no significant impact of the change in FN structure upon fibroblasts adhesion, which displayed active elongated shapes. The present features are crucial for understanding the cell adhesion mechanism induced by surface modification.
Collapse
Affiliation(s)
- M Lam
- LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Sorbonne Paris Nord, 99 avenue JB Clément, 93430 Villetaneuse, France
| | - C Falentin-Daudré
- LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Sorbonne Paris Nord, 99 avenue JB Clément, 93430 Villetaneuse, France.
| |
Collapse
|
7
|
Miranda A, Gómez-Varela AI, Stylianou A, Hirvonen LM, Sánchez H, De Beule PAA. How did correlative atomic force microscopy and super-resolution microscopy evolve in the quest for unravelling enigmas in biology? NANOSCALE 2021; 13:2082-2099. [PMID: 33346312 DOI: 10.1039/d0nr07203f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the invention of the Atomic Force Microscope (AFM) in 1986 and the subsequent developments in liquid imaging and cellular imaging it became possible to study the topography of cellular specimens under nearly physiological conditions with nanometric resolution. The application of AFM to biological research was further expanded with the technological advances in imaging modes where topographical data can be combined with nanomechanical measurements, offering the possibility to retrieve the biophysical properties of tissues, cells, fibrous components and biomolecules. Meanwhile, the quest for breaking the Abbe diffraction limit restricting microscopic resolution led to the development of super-resolution fluorescence microscopy techniques that brought the resolution of the light microscope comparable to the resolution obtained by AFM. The instrumental combination of AFM and optical microscopy techniques has evolved over the last decades from integration of AFM with bright-field and phase-contrast imaging techniques at first to correlative AFM and wide-field fluorescence systems and then further to the combination of AFM and fluorescence based super-resolution microscopy modalities. Motivated by the many developments made over the last decade, we provide here a review on AFM combined with super-resolution fluorescence microscopy techniques and how they can be applied for expanding our understanding of biological processes.
Collapse
Affiliation(s)
- Adelaide Miranda
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| | - Ana I Gómez-Varela
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal. and Department of Applied Physics, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| | - Andreas Stylianou
- Cancer Biophysics Laboratory, University of Cyprus, Nicosia, Cyprus and School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Liisa M Hirvonen
- Centre for Microscopy, Characterisation and Analysis (CMCA), The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Humberto Sánchez
- Faculty of Applied Sciences, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Pieter A A De Beule
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| |
Collapse
|
8
|
Gudzenko T, Franz CM. Controlling Fibronectin Fibrillogenesis Using Visible Light. Front Mol Biosci 2020; 7:149. [PMID: 32733919 PMCID: PMC7360794 DOI: 10.3389/fmolb.2020.00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023] Open
Abstract
We previously developed a surface-assisted assay to image early steps of cell-induced plasma fibronectin (FN) fibrillogenesis by timelapse atomic force microscopy (AFM). Unexpectedly, complementary attempts to visualize FN fibrillogenesis using fluorescently labeled FN (Alexa Fluor 488 or 568) and live-cell light microscopy initially failed consistently. Further analysis revealed that fibrillar remodeling was inhibited efficiently in the focal area illuminated during fluorescence imaging, but progressed normally elsewhere on the substrate, suggesting photo sensitivity of the FN fibrillogenesis process. In agreement, active cell-driven fibrillar extension of FN could be stopped by transient illumination with visible light during AFM timelapse scanning. Phototoxic effects on the cells could be ruled out, because pre-illuminating the FN layer before cell seeding also blocked subsequent fibrillar formation. Varying the illumination wavelength range between 400 and 640 nm revealed strong inhibition across the visible spectrum up to 560 nm, and a decreasing inhibitory effect at longer wavelengths. The photo effect also affected unlabeled FN, but was enhanced by fluorophore labeling of FN. The inhibitory effect could be reduced when reactive oxygen species (ROS) were removed for the cell imaging medium. Based on these findings, FN fibrillogenesis could be imaged successfully using a labeling dye with a long excitation wavelength (Alexa Fluor 633, excitation at 632 nm) and ROS scavengers, such as oxyrase, in the imaging medium. Fibrillar remodeling of exposed cell-free FN layers by AFM scanning required higher scan forces compared to non-exposed FN, consisting with mechanical stiffing of the FN layer after illumination. In agreement with changes in FN mechanics, cells spreading on pre-exposed FN showed reduced migration speeds, altered focal adhesion arrangement, and changes in mechanosensitive signaling pathways, including reduced FAK (Y397) and paxillin (Y118) phosphorylation. Pre-exposure of FN to visible light prior to cell seeding thus provides a useful tool to delineate mechanosensitive signaling pathway related to FN fibrillogenesis. When using FN-coated cell adhesion substrates, care should be taken when comparing experimental results obtained on non-exposed FN layers in cell culture incubators, or during live-cell fluorescence imaging, as FN fibrillogenesis and mechanosensitive cellular signaling pathways may be affected differently.
Collapse
Affiliation(s)
- Tetyana Gudzenko
- DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Clemens M Franz
- DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany.,WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Bachmann M, Schäfer M, Mykuliak VV, Ripamonti M, Heiser L, Weißenbruch K, Krübel S, Franz CM, Hytönen VP, Wehrle-Haller B, Bastmeyer M. Induction of ligand promiscuity of αVβ3 integrin by mechanical force. J Cell Sci 2020; 133:jcs242404. [PMID: 32193334 DOI: 10.1242/jcs.242404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
αVβ3 integrin can bind to multiple extracellular matrix proteins, including vitronectin (Vn) and fibronectin (Fn), which are often presented to cells in culture as homogenous substrates. However, in tissues, cells experience highly complex and changing environments. To better understand integrin ligand selection in such complex environments, we employed binary-choice substrates of Fn and Vn to dissect αVβ3 integrin-mediated binding to different ligands on the subcellular scale. Super-resolution imaging revealed that αVβ3 integrin preferred binding to Vn under various conditions. In contrast, binding to Fn required higher mechanical load on αVβ3 integrin. Integrin mutations, structural analysis and chemical inhibition experiments indicated that the degree of hybrid domain swing-out is relevant for the selection between Fn and Vn; only a force-mediated, full hybrid domain swing-out facilitated αVβ3-Fn binding. Thus, force-dependent conformational changes in αVβ3 integrin increased the diversity of available ligands for binding and therefore enhanced the ligand promiscuity of this integrin.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Michael Bachmann
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Markus Schäfer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Vasyl V Mykuliak
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, and Fimlab Laboratories, Tampere 33014, Finland
| | - Marta Ripamonti
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Lia Heiser
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Kai Weißenbruch
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Sarah Krübel
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Clemens M Franz
- DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, and Fimlab Laboratories, Tampere 33014, Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
10
|
Gagné D, Benoit YD, Groulx JF, Vachon PH, Beaulieu JF. ILK supports RhoA/ROCK-mediated contractility of human intestinal epithelial crypt cells by inducing the fibrillogenesis of endogenous soluble fibronectin during the spreading process. BMC Mol Cell Biol 2020; 21:14. [PMID: 32183701 PMCID: PMC7079544 DOI: 10.1186/s12860-020-00259-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/05/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Fibronectin (FN) assembly into an insoluble fibrillar matrix is a crucial step in many cell responses to extracellular matrix (ECM) properties, especially with regards to the integrin-related mechanosensitive signaling pathway. We have previously reported that the silencing of expression of integrin-linked kinase (ILK) in human intestinal epithelial crypt (HIEC) cells causes significant reductions in proliferation and spreading through concomitantly acquired impairment of soluble FN deposition. These defects in ILK-depleted cells are rescued by growth on exogenous FN. In the present study we investigated the contribution of ILK in the fibrillogenesis of FN and its relation to integrin-actin axis signaling and organization. RESULTS We show that de novo fibrillogenesis of endogenous soluble FN is ILK-dependent. This function seemingly induces the assembly of an ECM that supports increased cytoskeletal tension and the development of a fully spread contractile cell phenotype. We observed that HIEC cell adhesion to exogenous FN or collagen-I (Col-I) is sufficient to restore fibrillogenesis of endogenous FN in ILK-depleted cells. We also found that optimal engagement of the Ras homolog gene family member A (RhoA) GTPase/Rho-associated kinase (ROCK-1, ROCK-2)/myosin light chain (MLC) pathway, actin ventral stress fiber formation, and integrin adhesion complex (IAC) maturation rely primarily upon the cell's capacity to execute FN fibrillogenesis, independent of any significant ILK input. Lastly, we confirm the integrin α5β1 as the main integrin responsible for FN assembly, although in ILK-depleted cells αV-class integrins expression is needed to allow the rescue of FN fibrillogenesis on exogenous substrate. CONCLUSION Our study demonstrates that ILK specifically induces the initiation of FN fibrillogenesis during cell spreading, which promotes RhoA/ROCK-dependent cell contractility and maturation of the integrin-actin axis structures. However, the fibrillogenesis process and its downstream effect on RhoA signaling, cell contractility and spreading are ILK-independent in human intestinal epithelial crypt cells.
Collapse
Affiliation(s)
- David Gagné
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, J1H 5N4 Canada
| | - Yannick D. Benoit
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5 Canada
| | - Jean-François Groulx
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093 USA
| | - Pierre H. Vachon
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4 Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, J1H 5N4 Canada
| |
Collapse
|
11
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
12
|
Voglstaetter M, Thomsen AR, Nouvel J, Koch A, Jank P, Navarro EG, Gainey-Schleicher T, Khanduri R, Groß A, Rossner F, Blaue C, Franz CM, Veil M, Puetz G, Hippe A, Dindorf J, Kashef J, Thiele W, Homey B, Greco C, Boucheix C, Baur A, Erbes T, Waller CF, Follo M, Hossein G, Sers C, Sleeman J, Nazarenko I. Tspan8 is expressed in breast cancer and regulates E-cadherin/catenin signalling and metastasis accompanied by increased circulating extracellular vesicles. J Pathol 2019; 248:421-437. [PMID: 30982971 PMCID: PMC6771825 DOI: 10.1002/path.5281] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 01/02/2023]
Abstract
Tspan8 exhibits a functional role in many cancer types including pancreatic, colorectal, oesophagus carcinoma, and melanoma. We present a first study on the expression and function of Tspan8 in breast cancer. Tspan8 protein was present in the majority of human primary breast cancer lesions and metastases in the brain, bone, lung, and liver. In a syngeneic rat breast cancer model, Tspan8+ tumours formed multiple liver and spleen metastases, while Tspan8− tumours exhibited a significantly diminished ability to metastasise, indicating a role of Tspan8 in metastases. Addressing the underlying molecular mechanisms, we discovered that Tspan8 can mediate up‐regulation of E‐cadherin and down‐regulation of Twist, p120‐catenin, and β‐catenin target genes accompanied by the change of cell phenotype, resembling the mesenchymal–epithelial transition. Furthermore, Tspan8+ cells exhibited enhanced cell–cell adhesion, diminished motility, and decreased sensitivity to irradiation. As a regulator of the content and function of extracellular vesicles (EVs), Tspan8 mediated a several‐fold increase in EV number in cell culture and the circulation of tumour‐bearing animals. We observed increased protein levels of E‐cadherin and p120‐catenin in these EVs; furthermore, Tspan8 and p120‐catenin were co‐immunoprecipitated, indicating that they may interact with each other. Altogether, our findings show the presence of Tspan8 in breast cancer primary lesion and metastases and indicate its role as a regulator of cell behaviour and EV release in breast cancer. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Maren Voglstaetter
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas R Thomsen
- Department of Radiation Oncology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jerome Nouvel
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Arend Koch
- Institute of Neuropathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Jank
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elena Grueso Navarro
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tanja Gainey-Schleicher
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Richa Khanduri
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Groß
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Rossner
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carina Blaue
- DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Clemens M Franz
- DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marina Veil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerhard Puetz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Andreas Hippe
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Jochen Dindorf
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Translational Research Center, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Jubin Kashef
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Wilko Thiele
- Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Celine Greco
- UMR-S935, Inserm, Université Paris Sud, Université Paris Saclay, Villejuif, France.,Department of Pain Management and Palliative Care, Necker Hospital, Paris, France
| | - Claude Boucheix
- UMR-S935, Inserm, Université Paris Sud, Université Paris Saclay, Villejuif, France.,Department of Pain Management and Palliative Care, Necker Hospital, Paris, France
| | - Andreas Baur
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Translational Research Center, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Thalia Erbes
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius F Waller
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ghamartaj Hossein
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Animal Physiology, Laboratory of Developmental Biology, University of Tehran, Tehran, Iran
| | - Christine Sers
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jonathan Sleeman
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Lansky Z, Mutsafi Y, Houben L, Ilani T, Armony G, Wolf SG, Fass D. 3D mapping of native extracellular matrix reveals cellular responses to the microenvironment. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 1:100002. [PMID: 32055794 PMCID: PMC7001979 DOI: 10.1016/j.yjsbx.2018.100002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 01/23/2023]
Abstract
Cells and extracellular matrix (ECM) are mutually interdependent: cells guide self-assembly of ECM precursors, and the resulting ECM architecture supports and instructs cells. Though bidirectional signaling between ECM and cells is fundamental to cell biology, it is challenging to gain high-resolution structural information on cellular responses to the matrix microenvironment. Here we used cryo-scanning transmission electron tomography (CSTET) to reveal the nanometer- to micron-scale organization of major fibroblast ECM components in a native-like context, while simultaneously visualizing internal cell ultrastructure including organelles and cytoskeleton. In addition to extending current models for collagen VI fibril organization, three-dimensional views of thick cell regions and surrounding matrix showed how ECM networks impact the structures and dynamics of intracellular organelles and how cells remodel ECM. Collagen VI and fibronectin were seen to distribute in fundamentally different ways in the cell microenvironment and perform distinct roles in supporting and interacting with cells. This work demonstrates that CSTET provides a new perspective for the study of ECM in cell biology, highlighting labeled extracellular elements against a backdrop of unlabeled but morphologically identifiable cellular features with nanometer resolution detail.
Collapse
Affiliation(s)
- Zipora Lansky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Mutsafi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gad Armony
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author.
| |
Collapse
|
14
|
Mezzenga R, Mitsi M. The Molecular Dance of Fibronectin: Conformational Flexibility Leads to Functional Versatility. Biomacromolecules 2018; 20:55-72. [PMID: 30403862 DOI: 10.1021/acs.biomac.8b01258] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fibronectin, a large multimodular protein and one of the major fibrillar components of the extracellular matrix, has been the subject of study for many decades and plays critical roles in embryonic development and tissue homeostasis. Moreover, fibronectin has been implicated in the pathology of many diseases, including cancer, and abnormal depositions of fibronectin have been identified in a number of amyloid and nonamyloid lesions. The ability of fibronectin to carry all these diverse functionalities depends on interactions with a large number of molecules, including adhesive and signaling cell surface receptors, other components of the extracellular matrix, and growth factors and cytokines. The regulation and integration of such large number of interactions depends on the modular architecture of fibronectin, which allows a large number of conformations, exposing or destroying different binding sites. In this Review, we summarize the current knowledge regarding the conformational flexibility of fibronectin, with an emphasis on how it regulates the ability of fibronectin to interact with various signaling molecules and cell-surface receptors and to form supramolecular assemblies and fibrillar structures.
Collapse
Affiliation(s)
- Raffaele Mezzenga
- Laboratory of Food and Soft Materials , ETH Zurich , 8092 Zurich , Switzerland
| | - Maria Mitsi
- Laboratory of Food and Soft Materials , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
15
|
Schnellmann R, Sack R, Hess D, Annis DS, Mosher DF, Apte SS, Chiquet-Ehrismann R. A Selective Extracellular Matrix Proteomics Approach Identifies Fibronectin Proteolysis by A Disintegrin-like and Metalloprotease Domain with Thrombospondin Type 1 Motifs (ADAMTS16) and Its Impact on Spheroid Morphogenesis. Mol Cell Proteomics 2018; 17:1410-1425. [PMID: 29669734 PMCID: PMC6030725 DOI: 10.1074/mcp.ra118.000676] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/21/2018] [Indexed: 01/28/2023] Open
Abstract
Secreted and cell-surface proteases are major mediators of extracellular matrix (ECM) turnover, but their mechanisms and regulatory impact are poorly understood. We developed a mass spectrometry approach using a cell-free ECM produced in vitro to identify fibronectin (FN) as a novel substrate of the secreted metalloprotease ADAMTS16. ADAMTS16 cleaves FN between its (I)5 and (I)6 modules, releasing the N-terminal 30 kDa heparin-binding domain essential for FN self-assembly. ADAMTS16 impairs FN fibrillogenesis as well as fibrillin-1 and tenascin-C assembly, thus inhibiting formation of a mature ECM by cultured fibroblasts. Furthermore ADAMTS16 has a marked morphogenetic impact on spheroid formation by renal tubule-derived MDCKI cells. The N-terminal FN domain released by ADAMTS16 up-regulates MMP3, which cleaves the (I)5-(I)6 linker of FN similar to ADAMTS16, therefore creating a proteolytic feed-forward mechanism. Thus, FN proteolysis not only regulates FN turnover, but also FN assembly, with potential long-term consequences for ECM assembly and morphogenesis.
Collapse
Affiliation(s)
- Rahel Schnellmann
- From the ‡Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- §Faculty of Science, University of Basel, Basel, Switzerland
- ¶Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195
| | - Ragna Sack
- From the ‡Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniel Hess
- From the ‡Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Douglas S Annis
- ‖Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Deane F Mosher
- ‖Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Suneel S Apte
- ¶Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195;
| | - Ruth Chiquet-Ehrismann
- From the ‡Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- §Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Miron-Mendoza M, Graham E, Manohar S, Petroll WM. Fibroblast-fibronectin patterning and network formation in 3D fibrin matrices. Matrix Biol 2017; 64:69-80. [PMID: 28602859 PMCID: PMC5705415 DOI: 10.1016/j.matbio.2017.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE We previously reported that fibroblasts migrating within 3-D collagen matrices move independently, whereas fibroblasts within 3-D fibrin matrices form an interconnected network. Similar networks have been identified previously during in vivo corneal wound healing. In this study, we investigate the role of fibronectin in mediating this mechanism of collective cell spreading, migration and patterning. METHODS To assess cell spreading, corneal fibroblasts were plated within fibrillar collagen or fibrin matrices. To assess migration, compacted cell-populated collagen matrices were nested inside cell-free fibrin matrices. Constructs were cultured in serum-free media containing PDGF, with or without RGD peptide, anti-α5 or anti-fibronectin blocking antibodies. In some experiments, LifeAct and fluorescent fibronectin were used to allow dynamic assessment of cell-induced fibronectin reorganization. 3-D and 4-D imaging were used to assess cell mechanical behavior, connectivity, F-actin, α5 integrin and fibronectin organization. RESULTS Corneal fibroblasts within 3-D fibrin matrices formed an interconnected network that was lined with cell-secreted fibronectin. Live cell imaging demonstrated that fibronectin tracks were formed at the leading edge of spreading and migrating cells. Furthermore, fibroblasts preferentially migrated through fibronectin tracks laid down by other cells. Interfering with cell-fibronectin binding with RGD, anti α5 integrin or anti fibronectin antibodies inhibited cell spreading and migration through fibrin, but did not affect cell behavior in collagen. CONCLUSIONS In this study, a novel mode of cell patterning was identified in which corneal fibroblasts secrete and attach to fibronectin via α5β1 integrin to facilitate spreading and migration within 3-D fibrin matrices, resulting in the formation of localized fibronectin tracks. Other cells use these fibronectin tracks as conduits, resulting in an interconnected cell-fibronectin network.
Collapse
Affiliation(s)
- Miguel Miron-Mendoza
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9057, United States
| | - Eric Graham
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9057, United States
| | - Sujal Manohar
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9057, United States
| | - W Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9057, United States.
| |
Collapse
|
17
|
Szymanski JM, Sevcik EN, Zhang K, Feinberg AW. Stretch-dependent changes in molecular conformation in fibronectin nanofibers. Biomater Sci 2017; 5:1629-1639. [PMID: 28612067 PMCID: PMC5549851 DOI: 10.1039/c7bm00370f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fibronectin (FN) is an extracellular matrix (ECM) glycoprotein that plays an important role in a wide range of biological processes including embryonic development, wound healing, and fibrosis. Recent evidence has demonstrated that FN is mechanosensitive, where the application of force induces conformational changes within the FN molecule to expose otherwise cryptic binding domains. However, it has proven technically challenging to dynamically monitor how the nanostructure of FN fibers changes as a result of force-induced extension, due in part to the inherent complexity of FN networks within tissue and cell-generated extracellular matrix (ECM). This has limited our understanding of FN matrix mechanobiology and the complex bi-directional signaling between cells and the ECM, and de novo FN fiber fabrication strategies have only partially addressed this. Towards addressing this need, we have developed a modified surface-initiated assembly (SIA) technique to engineer FN nanofibers that we can uniaxially stretch to >7-fold extensions and subsequently immobilize them in the stretched state for high resolution atomic force microscopy (AFM) imaging. Using this approach, we analyzed how the nanostructure of FN molecules within the nanofibers changed with stretch. In fully contracted FN nanofibers, we observed large, densely packed, isotropically-oriented nodules. With intermediate extension, uniaxially-aligned fibrillar regions developed and nodules became progressively smaller. At high extension, the nanostructure consisted of highly aligned fibrils with small nodules in a beads-on-a-string arrangement. In summary, we have established a methodology to uniaxially stretch FN fibers and monitor changes in nanostructure using AFM. Our results provide new insight into how FN fiber extension can affect the morphology of the constituent FN molecules.
Collapse
Affiliation(s)
- John M Szymanski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Emily N Sevcik
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Kairui Zhang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA. and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
18
|
Li M, Dang D, Liu L, Xi N, Wang Y. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Trans Nanobioscience 2017; 16:523-540. [PMID: 28613180 DOI: 10.1109/tnb.2017.2714462] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.
Collapse
|
19
|
Zhou L, Cai M, Tong T, Wang H. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy. SENSORS 2017; 17:s17040938. [PMID: 28441775 PMCID: PMC5426934 DOI: 10.3390/s17040938] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 01/07/2023]
Abstract
Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.
Collapse
Affiliation(s)
- Lulu Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ti Tong
- The Second Hospital of Jilin University, Changchun 130041, China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
20
|
Georgiadou M, Lilja J, Jacquemet G, Guzmán C, Rafaeva M, Alibert C, Yan Y, Sahgal P, Lerche M, Manneville JB, Mäkelä TP, Ivaska J. AMPK negatively regulates tensin-dependent integrin activity. J Cell Biol 2017; 216:1107-1121. [PMID: 28289092 PMCID: PMC5379951 DOI: 10.1083/jcb.201609066] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/20/2016] [Accepted: 02/03/2017] [Indexed: 12/25/2022] Open
Abstract
Georgiadou et al. show that the major metabolic sensor AMPK regulates integrin activity and integrin-dependent processes in fibroblasts by modulating tensin levels. Loss of AMPK up-regulates tensin expression, triggering enhanced integrin activity in fibrillar adhesions, fibronectin remodeling, and traction stress. Tight regulation of integrin activity is paramount for dynamic cellular functions such as cell matrix adhesion and mechanotransduction. Integrin activation is achieved through intracellular interactions at the integrin cytoplasmic tails and through integrin–ligand binding. In this study, we identify the metabolic sensor AMP-activated protein kinase (AMPK) as a β1-integrin inhibitor in fibroblasts. Loss of AMPK promotes β1-integrin activity, the formation of centrally located active β1-integrin– and tensin-rich mature fibrillar adhesions, and cell spreading. Moreover, in the absence of AMPK, cells generate more mechanical stress and increase fibronectin fibrillogenesis. Mechanistically, we show that AMPK negatively regulates the expression of the integrin-binding proteins tensin1 and tensin3. Transient expression of tensins increases β1-integrin activity, whereas tensin silencing reduces integrin activity in fibroblasts lacking AMPK. Accordingly, tensin silencing in AMPK-depleted fibroblasts impedes enhanced cell spreading, traction stress, and fibronectin fiber formation. Collectively, we show that the loss of AMPK up-regulates tensins, which bind β1-integrins, supporting their activity and promoting fibrillar adhesion formation and integrin-dependent processes.
Collapse
Affiliation(s)
- Maria Georgiadou
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Johanna Lilja
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Camilo Guzmán
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Maria Rafaeva
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Charlotte Alibert
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, F-75005 Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, Centre National de la Recherche Scientifique, UMR144, F-75005 Paris, France
| | - Yan Yan
- Research Programs Unit, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pranshu Sahgal
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Martina Lerche
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Jean-Baptiste Manneville
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, F-75005 Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, Centre National de la Recherche Scientifique, UMR144, F-75005 Paris, France
| | - Tomi P Mäkelä
- Research Programs Unit, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland.,Department of Biochemistry, University of Turku, FI-20520 Turku, Finland
| |
Collapse
|
21
|
Cascione M, de Matteis V, Rinaldi R, Leporatti S. Atomic force microscopy combined with optical microscopy for cells investigation. Microsc Res Tech 2016; 80:109-123. [DOI: 10.1002/jemt.22696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Mariafrancesca Cascione
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Università del Salento Via Monteroni; 73100 Lecce Italy
- Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT) of Consiglio Nazionale delle Ricerche; Istituto Nanoscienze; Via Arnesano 16, Lecce Italy
| | - Valeria de Matteis
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Università del Salento Via Monteroni; 73100 Lecce Italy
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Università del Salento Via Monteroni; 73100 Lecce Italy
- Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT) of Consiglio Nazionale delle Ricerche; Istituto Nanoscienze; Via Arnesano 16, Lecce Italy
| | - Stefano Leporatti
- CNR Nantotec-Istituto di Nanotecnologia, Polo di Nanotecnologia c/o Campus Ecoteckne, Via Monteroni; 73100, Lecce Italy
| |
Collapse
|
22
|
Maver U, Velnar T, Gaberšček M, Planinšek O, Finšgar M. Recent progressive use of atomic force microscopy in biomedical applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|