1
|
Zhang X, Tseo Y, Bai Y, Chen F, Uhler C. Prediction of protein subcellular localization in single cells. Nat Methods 2025:10.1038/s41592-025-02696-1. [PMID: 40360932 DOI: 10.1038/s41592-025-02696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025]
Abstract
The subcellular localization of a protein is important for its function, and its mislocalization is linked to numerous diseases. Existing datasets capture limited pairs of proteins and cell lines, and existing protein localization prediction models either miss cell-type specificity or cannot generalize to unseen proteins. Here we present a method for Prediction of Unseen Proteins' Subcellular localization (PUPS). PUPS combines a protein language model and an image inpainting model to utilize both protein sequence and cellular images. We demonstrate that the protein sequence input enables generalization to unseen proteins, and the cellular image input captures single-cell variability, enabling cell-type-specific predictions. Experimental validation shows that PUPS can predict protein localization in newly performed experiments outside the Human Protein Atlas used for training. Collectively, PUPS provides a framework for predicting differential protein localization across cell lines and single cells within a cell line, including changes in protein localization driven by mutations.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yitong Tseo
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Caroline Uhler
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Zhang X, Tseo Y, Bai Y, Chen F, Uhler C. Prediction of protein subcellular localization in single cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605178. [PMID: 39091825 PMCID: PMC11291118 DOI: 10.1101/2024.07.25.605178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The subcellular localization of a protein is important for its function and interaction with other molecules, and its mislocalization is linked to numerous diseases. While atlas-scale efforts have been made to profile protein localization across various cell lines, existing datasets only contain limited pairs of proteins and cell lines which do not cover all human proteins. We present a method that uses both protein sequences and cellular landmark images to perform Predictions of Unseen Proteins' Subcellular localization (PUPS), which can generalize to both proteins and cell lines not used for model training. PUPS combines a protein language model and an image inpainting model to utilize both protein sequence and cellular images for protein localization prediction. The protein sequence input enables generalization to unseen proteins and the cellular image input enables cell type specific prediction that captures single-cell variability. PUPS' ability to generalize to unseen proteins and cell lines enables us to assess the variability in protein localization across cell lines as well as across single cells within a cell line and to identify the biological processes associated with the proteins that have variable localization. Experimental validation shows that PUPS can be used to predict protein localization in newly performed experiments outside of the Human Protein Atlas used for training. Collectively, PUPS utilizes both protein sequences and cellular images to predict protein localization in unseen proteins and cell lines with the ability to capture single-cell variability.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, U.S.A
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, U.S.A
| | - Yitong Tseo
- Computational and Systems Biology Program, Massachusetts Institute of Technology, U.S.A
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, U.S.A
| | - Fei Chen
- Broad Institute of MIT and Harvard, U.S.A
- Department of Stem Cell and Regenerative Biology, Harvard University, U.S.A
| | - Caroline Uhler
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, U.S.A
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, U.S.A
| |
Collapse
|
3
|
Huang Y, Guo S, Lin Y, Huo L, Yan H, Lin Z, Chen Z, Cai J, Wu J, Yuan J, Guan H, Wu G, Wu W, Tao T. LincRNA01703 Facilitates CD81 + Exosome Secretion to Inhibit Lung Adenocarcinoma Metastasis via the Rab27a/SYTL1/CD81 Complex. Cancers (Basel) 2023; 15:5781. [PMID: 38136327 PMCID: PMC10742068 DOI: 10.3390/cancers15245781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Metastasis, a major cause of cancer-related mortality worldwide, frequently occurs early in the diagnosis of lung adenocarcinoma (LUAD). However, the precise molecular mechanisms governing the aggressive metastatic behavior of LUAD remain incompletely understood. In this study, we present compelling evidence indicating that the long noncoding RNA linc01703 is significantly downregulated in metastatic lung cancer cells. Intriguingly, in vivo experiments revealed that Linc01703 exerted a profound inhibitory effect on lung cancer metastasis without discernible impact on the in vitro proliferation or invasion capacities of LUAD cells. Mechanistically, Linc01703 enhanced the interaction between Rab27a, SYTL1, and CD81, consequently promoting the secretion of CD81+ exosomes. These exosomes, in turn, suppressed the infiltration of immune cells within the tumor microenvironment, thereby impeding LUAD metastasis. Importantly, our analysis of lung cancer tissues revealed a correlation between reduced CD81 expression and an unfavorable patient prognosis. Collectively, our findings suggest that Linc01703 functions as a metastasis suppressor by facilitating the secretion of CD81+ exosomes through the formation of the Rab27a/SYTL1/CD81 complex.
Collapse
Affiliation(s)
- Yun Huang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China
| | - Shan Guo
- Department of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China;
| | - Ying Lin
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China
| | - Liyun Huo
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Hongmei Yan
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Zhanwen Lin
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Zishuo Chen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Junchao Cai
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China
| | - Jueheng Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China
| | - Jie Yuan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Guoyong Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Weibin Wu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospitalof Sun Yat-sen University, Guangzhou 510000, China
| | - Tianyu Tao
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
4
|
Nagano M, Aoshima K, Shimamura H, Siekhaus DE, Toshima JY, Toshima J. Distinct role of TGN-resident clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway. J Cell Sci 2023; 136:jcs261448. [PMID: 37539494 DOI: 10.1242/jcs.261448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Clathrin-mediated vesicle trafficking plays central roles in post-Golgi transport. In yeast (Saccharomyces cerevisiae), the AP-1 complex and GGA adaptors are predicted to generate distinct transport vesicles at the trans-Golgi network (TGN), and the epsin-related proteins Ent3p and Ent5p (collectively Ent3p/5p) act as accessories for these adaptors. Recently, we showed that vesicle transport from the TGN is crucial for yeast Rab5 (Vps21p)-mediated endosome formation, and that Ent3p/5p are crucial for this process, whereas AP-1 and GGA adaptors are dispensable. However, these observations were incompatible with previous studies showing that these adaptors are required for Ent3p/5p recruitment to the TGN, and thus the overall mechanism responsible for regulation of Vps21p activity remains ambiguous. Here, we investigated the functional relationships between clathrin adaptors in post-Golgi-mediated Vps21p activation. We show that AP-1 disruption in the ent3Δ5Δ mutant impaired transport of the Vps21p guanine nucleotide exchange factor Vps9p transport to the Vps21p compartment and severely reduced Vps21p activity. Additionally, GGA adaptors, the phosphatidylinositol-4-kinase Pik1p and Rab11 GTPases Ypt31p and Ypt32p were found to have partially overlapping functions for recruitment of AP-1 and Ent3p/5p to the TGN. These findings suggest a distinct role of clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway.
Collapse
Affiliation(s)
- Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kaito Aoshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiroki Shimamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | | | - Junko Y Toshima
- School of Health Science, Tokyo University of Technology, 5-23-22 Nishikamada, Ota-ku, Tokyo 144-8535, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
5
|
Li X, Liu D, Griffis E, Novick P. Exploring the consequences of redirecting an exocytic Rab onto endocytic vesicles. Mol Biol Cell 2023; 34:ar38. [PMID: 36857153 PMCID: PMC10162416 DOI: 10.1091/mbc.e23-01-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Bidirectional vesicular traffic links compartments along the exocytic and endocytic pathways. Rab GTPases have been implicated in specifying the direction of vesicular transport. To explore this possibility, we sought to redirect an exocytic Rab, Sec4, onto endocytic vesicles by fusing the catalytic domain of the Sec4 GEF, Sec2, onto the CUE localization domain of Vps9, a GEF for the endocytic Rab Ypt51. The Sec2GEF-GFP-CUE construct localized to bright puncta predominantly near sites of polarized growth, and this localization was dependent on the ability of the CUE domain to bind to the ubiquitin moieties added to the cytoplasmic tails of proteins destined for endocytic internalization. Sec4 and Sec4 effectors were recruited to these puncta with various efficiencies. Cells expressing Sec2GEF-GFP-CUE grew surprisingly well and secreted protein at near-normal efficiency, implying that Golgi-derived secretory vesicles were delivered to polarized sites of cell growth despite the misdirection of Sec4 and its effectors. A low efficiency mechanism for localization of Sec2 to secretory vesicles that is independent of known cues might be responsible. In total, the results suggest that while Rabs may play a critical role in specifying the direction of vesicular transport, cells are remarkably tolerant of Rab misdirection.
Collapse
Affiliation(s)
- Xia Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Eric Griffis
- Nikon Imaging Center, University of California, San Diego, La Jolla, CA 92093-0694
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| |
Collapse
|
6
|
Li X, Liu D, Griffis E, Novick P. Exploring the consequences of redirecting an exocytic Rab onto endocytic vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527811. [PMID: 36798320 PMCID: PMC9934678 DOI: 10.1101/2023.02.09.527811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Bidirectional vesicular traffic links compartments along the exocytic and endocytic pathways. Rab GTPases have been implicated in specifying the direction of vesicular transport because anterograde vesicles are marked with a different Rab than retrograde vesicles. To explore this proposal, we sought to redirect an exocytic Rab, Sec4, onto endocytic vesicles by fusing the catalytic domain of the Sec4 GEF, Sec2, onto the CUE localization domain of Vps9, a GEF for the endocytic Rab, Ypt51. The Sec2GEF-GFP-CUE construct was found to localize to bright puncta predominantly near sites of polarized growth and this localization was strongly dependent upon the ability of the CUE domain to bind to the ubiquitin moieties added to the cytoplasmic tails of proteins destined for endocytic internalization. Sec4 and Sec4 effectors were recruited to these puncta with varying efficiency. The puncta appeared to consist of clusters of 80 nm vesicles and although the puncta are largely static, FRAP analysis suggests that traffic into and out of these clusters continues. Cells expressing Sec2GEF-GFP-CUE grew surprisingly well and secreted protein at near normal efficiency, implying that Golgi derived secretory vesicles were delivered to polarized sites of cell growth, where they tethered and fused with the plasma membrane despite the misdirection of Sec4 and its effectors. In total, the results suggest that while Rabs play a critical role in regulating vesicular transport, cells are remarkably tolerant of Rab misdirection.
Collapse
Affiliation(s)
- Xia Li
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| | - Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| | - Eric Griffis
- Nikon Imaging Center, University of California at San Diego, La Jolla, California, United States
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| |
Collapse
|
7
|
Wang X, Zheng S, Yang F, Zhang W, Zhao D, Xue X, Lin Q, He Y, Hu G, Hu Y. lncRNA HITT inhibits metastasis by attenuating Rab5-mediated endocytosis in lung adenocarcinoma. Mol Ther 2022; 30:1071-1088. [PMID: 35017116 PMCID: PMC8899701 DOI: 10.1016/j.ymthe.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022] Open
Abstract
Endocytosis of cell surface receptors is essential for cell migration and cancer metastasis. Rab5, a small GTPase of the Rab family, is a key regulator of endosome dynamics and thus cell migration. However, how its activity is regulated still remains to be addressed. Here, we identified a Rab5 inhibitor, a long non-coding RNA, namely HITT (HIF-1α inhibitor at translation level). Our data show that HITT expression is inversely associated with advanced stages and poor prognosis of lung adenocarcinoma patients with area under receiver operating characteristics (ROC) curve (AUC) 0.6473. Further study reveals that both endogenous and exogenous HITT inhibits single-cell migration by repressing β1 integrin endocytosis in lung adenocarcinoma. Mechanistically, HITT is physically associated with Rab5 at switch I via 1248-1347 nt and suppresses β1 integrin endocytosis and subsequent cancer metastasis by interfering with guanine nucleotide exchange factors (GEFs) for Rab5 binding. Collectively, these findings suggest that HITT directly participates in the regulation of Rab5 activity, leading to a decreased integrin internalization and cancer metastasis, which provides important insights into a mechanistic understanding of endocytosis and cancer metastasis.
Collapse
Affiliation(s)
- Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Wenxin Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Dong Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Xuting Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Yunfei He
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Science, 320 Yuyang Road, Shanghai 200031, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Science, 320 Yuyang Road, Shanghai 200031, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China; Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
8
|
Nickerson DP, Quinn MA, Milnes JM. Rapid conversion of replicating and integrating Saccharomyces cerevisiae plasmid vectors via Cre recombinase. G3 (BETHESDA, MD.) 2021; 11:jkab336. [PMID: 34599813 PMCID: PMC8664424 DOI: 10.1093/g3journal/jkab336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
Plasmid shuttle vectors capable of replication in both Saccharomyces cerevisiae and Escherichia coli and optimized for controlled modification in vitro and in vivo are a key resource supporting yeast as a premier system for genetics research and synthetic biology. We have engineered a series of yeast shuttle vectors optimized for efficient insertion, removal, and substitution of plasmid yeast replication loci, allowing generation of a complete set of integrating, low copy and high copy plasmids via predictable operations as an alternative to traditional subcloning. We demonstrate the utility of this system through modification of replication loci via Cre recombinase, both in vitro and in vivo, and restriction endonuclease treatments.
Collapse
Affiliation(s)
- Daniel P Nickerson
- Department of Biology, California State University, San Bernardino, San Bernardino, CA 92407, USA
| | - Monique A Quinn
- Department of Biology, California State University, San Bernardino, San Bernardino, CA 92407, USA
| | - Joshua M Milnes
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195-3750, USA
| |
Collapse
|
9
|
Pan T, Wang Y, Jing R, Wang Y, Wei Z, Zhang B, Lei C, Qi Y, Wang F, Bao X, Yan M, Zhang Y, Zhang P, Yu M, Wan G, Chen Y, Yang W, Zhu J, Zhu Y, Zhu S, Cheng Z, Zhang X, Jiang L, Ren Y, Wan J. Post-Golgi trafficking of rice storage proteins requires the small GTPase Rab7 activation complex MON1-CCZ1. PLANT PHYSIOLOGY 2021; 187:2174-2191. [PMID: 33871646 PMCID: PMC8644195 DOI: 10.1093/plphys/kiab175] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/26/2021] [Indexed: 05/16/2023]
Abstract
Protein storage vacuoles (PSVs) are unique organelles that accumulate storage proteins in plant seeds. Although morphological evidence points to the existence of multiple PSV-trafficking pathways for storage protein targeting, the molecular mechanisms that regulate these processes remain mostly unknown. Here, we report the functional characterization of the rice (Oryza sativa) glutelin precursor accumulation7 (gpa7) mutant, which over-accumulates 57-kDa glutelin precursors in dry seeds. Cytological and immunocytochemistry studies revealed that the gpa7 mutant exhibits abnormal accumulation of storage prevacuolar compartment-like structures, accompanied by the partial mistargeting of glutelins to the extracellular space. The gpa7 mutant was altered in the CCZ1 locus, which encodes the rice homolog of Arabidopsis (Arabidopsis thaliana) CALCIUM CAFFEINE ZINC SENSITIVITY1a (CCZ1a) and CCZ1b. Biochemical evidence showed that rice CCZ1 interacts with MONENSIN SENSITIVITY1 (MON1) and that these proteins function together as the Rat brain 5 (Rab5) effector and the Rab7 guanine nucleotide exchange factor (GEF). Notably, loss of CCZ1 function promoted the endosomal localization of vacuolar protein sorting-associated protein 9 (VPS9), which is the GEF for Rab5 in plants. Together, our results indicate that the MON1-CCZ1 complex is involved in post-Golgi trafficking of rice storage protein through a Rab5- and Rab7-dependent pathway.
Collapse
Affiliation(s)
- Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongfei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongyan Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Binglei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanzhou Qi
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuhao Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyuan Yan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengcheng Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingzhou Yu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Gexing Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenkun Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for communication: ,
| |
Collapse
|
10
|
Parkinson G, Roboti P, Zhang L, Taylor S, Woodman P. His domain protein tyrosine phosphatase and Rabaptin-5 couple endo-lysosomal sorting of EGFR with endosomal maturation. J Cell Sci 2021; 134:272512. [PMID: 34657963 PMCID: PMC8627557 DOI: 10.1242/jcs.259192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 01/20/2023] Open
Abstract
His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) collaborates with endosomal sorting complexes required for transport (ESCRTs) to sort endosomal cargo into intralumenal vesicles, forming the multivesicular body (MVB). Completion of MVB sorting is accompanied by maturation of the endosome into a late endosome, an event that requires inactivation of the early endosomal GTPase Rab5 (herein referring to generically to all isoforms). Here, we show that HD-PTP links ESCRT function with endosomal maturation. HD-PTP depletion prevents MVB sorting, while also blocking cargo from exiting Rab5-rich endosomes. HD-PTP-depleted cells contain hyperphosphorylated Rabaptin-5 (also known as RABEP1), a cofactor for the Rab5 guanine nucleotide exchange factor Rabex-5 (also known as RABGEF1), although HD-PTP is unlikely to directly dephosphorylate Rabaptin-5. In addition, HD-PTP-depleted cells exhibit Rabaptin-5-dependent hyperactivation of Rab5. HD-PTP binds directly to Rabaptin-5, between its Rabex-5- and Rab5-binding domains. This binding reaction involves the ESCRT-0/ESCRT-III binding site in HD-PTP, which is competed for by an ESCRT-III peptide. Jointly, these findings indicate that HD-PTP may alternatively scaffold ESCRTs and modulate Rabex-5–Rabaptin-5 activity, thereby helping to coordinate the completion of MVB sorting with endosomal maturation. Summary: Sorting of endocytic cargo to the multivesicular body is accompanied by endosomal maturation. Here, we provide a potential mechanism by which these two processes are linked.
Collapse
Affiliation(s)
- Gabrielle Parkinson
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Peristera Roboti
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Ling Zhang
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Sandra Taylor
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Philip Woodman
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
11
|
Yang C, Li J, Chen X, Zhang X, Liao D, Yun Y, Zheng W, Abubakar YS, Li G, Wang Z, Zhou J. FgVps9, a Rab5 GEF, Is Critical for DON Biosynthesis and Pathogenicity in Fusarium graminearum. Front Microbiol 2020; 11:1714. [PMID: 32849361 PMCID: PMC7418515 DOI: 10.3389/fmicb.2020.01714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Rab GTPases play an important role in vesicle-mediated membrane trafficking in eukaryotes. Previous studies have demonstrated that deletion of RAB5/VPS21 reduces endocytosis and virulence of fungal phytopathogens in their host plants. However, Rab5 GTPase cycle regulators have not been characterized in Fusarium graminearum, the causal agent of Fusarium head blight (FHB) or head scab disease in cereal crops. In this study, we have identified and characterized a Rab5 guanine nucleotide exchange factor (GEF), the Vps9 homolog FgVps9, in F. graminearum. Yeast two hybrid (Y2H) assays have shown that FgVps9 specifically interacts with the guanosine diphosphate (GDP)-bound (inactive) forms of FgRab51 and FgRab52, the Rab5 isoforms in F. graminearum. Deletion of FgVPS9 shows impaired fungal growth and conidiation. Pathogenicity assays indicate that deletion of FgVPS9 can significantly decrease the virulence of F. graminearum in wheat. Cytological analyses have indicated that FgVps9 colocalizes with FgRab51 and FgRab52 on early endosomes and regulates endocytosis and autophagy processes. Gene expression and cytological examination have shown that FgVps9 and FgRab51 or FgRab52 function in concert to control deoxynivalenol (DON) biosynthesis by regulating the expression of trichothecene biosynthesis-related genes and toxisome biogenesis. Taken together, FgVps9 functions as a GEF for FgRab51 and FgRab52 to regulate endocytosis, which, as a basic cellular function, has significant impact on the vegetative growth, asexual development, autophagy, DON production, and plant infection in F. graminearum.
Collapse
Affiliation(s)
- Chengdong Yang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingjing Li
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Chen
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingzhi Zhang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Danhua Liao
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Zonghua Wang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Wei Z, Chen Y, Zhang B, Ren Y, Qiu L. GmGPA3 is involved in post-Golgi trafficking of storage proteins and cell growth in soybean cotyledons. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110423. [PMID: 32234217 DOI: 10.1016/j.plantsci.2020.110423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 06/11/2023]
Abstract
As the major nutritional component in soybean seeds storage proteins are initially synthesized on the endoplasmic reticulum as precursors and subsequently delivered to protein storage vacuoles (PSVs) via the Golgi-mediated pathway where they are converted into mature subunits and accumulated. However, the molecular machinery required for storage protein trafficking in soybean remains largely unknown. In this study, we cloned the sole soybean homolog of OsGPA3 that encodes a plant-unique kelch-repeat regulator of post-Golgi vesicular traffic for rice storage protein sorting. A complementation test showed that GmGPA3 could rescue the rice gpa3 mutant. Biochemical assays verified that GmGPA3 physically interacts with GmRab5 and its guanine exchange factor (GEF) GmVPS9. Expression of GmGPA3 had no obvious effect on the GEF activity of GmVPS9 toward GmRab5a. Notably, knock-down of GmGPA3 disrupted the trafficking of mmRFP-CT10 (an artificial cargo destined for PSVs) in developing soybean cotyledons. We identified two putative GmGPA3 interacting partners (GmGMG3 and GmGMG11) by screening a yeast cDNA library. Overexpression of GmGPA3 or GmGMG3 caused shrunken cotyledon cells. Our overall results suggested that GmGPA3 plays an important role in cell growth and development, in addition to its conserved role in mediating storage protein trafficking in soybean cotyledons.
Collapse
Affiliation(s)
- Zhongyan Wei
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, PR China
| | - Yu Chen
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Lijuan Qiu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
13
|
Wei Z, Pan T, Zhao Y, Su B, Ren Y, Qiu L. The small GTPase Rab5a and its guanine nucleotide exchange factors are involved in post-Golgi trafficking of storage proteins in developing soybean cotyledon. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:808-822. [PMID: 31624827 DOI: 10.1093/jxb/erz454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Storage protein is the most abundant nutritional component in soybean seed. Morphology-based evidence has verified that storage proteins are initially synthesized on the endoplasmic reticulum, and then follow the Golgi-mediated pathway to the protein storage vacuole. However, the molecular mechanisms of storage protein trafficking in soybean remain unknown. Here, we clone the soybean homologs of Rab5 and its guanine nucleotide exchange factor (GEF) VPS9. GEF activity combined with yeast two-hybrid assays demonstrated that GmVPS9a2 might specifically act as the GEF of the canonical Rab5, while GmVPS9b functions as a common activator for all Rab5s. Subcellular localization experiments showed that GmRab5a was dually localized to the trans-Golgi network and pre-vacuolar compartments in developing soybean cotyledon cells. Expression of a dominant negative variant of Rab5a, or RNAi of either Rab5a or GmVPS9s, significantly disrupted trafficking of mRFP-CT10, a cargo marker for storage protein sorting, to protein storage vacuoles in maturing soybean cotyledons. Together, our results systematically revealed the important role of GmRab5a and its GEFs in storage protein trafficking, and verified the transient expression system as an efficient approach for elucidating storage protein trafficking mechanisms in seed.
Collapse
Affiliation(s)
- Zhongyan Wei
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, P.R. China
| | - Yuyang Zhao
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Bohong Su
- College of Agronomy, Northeast Agricultural University, Harbin, P.R. China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Lijuan Qiu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
14
|
Nagano M, Toshima JY, Siekhaus DE, Toshima J. Rab5-mediated endosome formation is regulated at the trans-Golgi network. Commun Biol 2019; 2:419. [PMID: 31754649 PMCID: PMC6858330 DOI: 10.1038/s42003-019-0670-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Early endosomes, also called sorting endosomes, are known to mature into late endosomes via the Rab5-mediated endolysosomal trafficking pathway. Thus, early endosome existence is thought to be maintained by the continual fusion of transport vesicles from the plasma membrane and the trans-Golgi network (TGN). Here we show instead that endocytosis is dispensable and post-Golgi vesicle transport is crucial for the formation of endosomes and the subsequent endolysosomal traffic regulated by yeast Rab5 Vps21p. Fittingly, all three proteins required for endosomal nucleotide exchange on Vps21p are first recruited to the TGN before transport to the endosome, namely the GEF Vps9p and the epsin-related adaptors Ent3/5p. The TGN recruitment of these components is distinctly controlled, with Vps9p appearing to require the Arf1p GTPase, and the Rab11s, Ypt31p/32p. These results provide a different view of endosome formation and identify the TGN as a critical location for regulating progress through the endolysosomal trafficking pathway.
Collapse
Affiliation(s)
- Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo, 125-8585 Japan
| | - Junko Y. Toshima
- School of Health Science, Tokyo University of Technology, 5-23-22 Nishikamada, Ota-ku, Tokyo, 144-8535 Japan
| | | | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo, 125-8585 Japan
| |
Collapse
|
15
|
Ma J, Wang Y, Ma X, Meng L, Jing R, Wang F, Wang S, Cheng Z, Zhang X, Jiang L, Wang J, Wang J, Zhao Z, Guo X, Lin Q, Wu F, Zhu S, Wu C, Ren Y, Lei C, Zhai H, Wan J. Disruption of gene SPL35, encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1679-1693. [PMID: 30771255 PMCID: PMC6662554 DOI: 10.1111/pbi.13093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 05/23/2023]
Abstract
Lesion mimic mutants that exhibit spontaneous hypersensitive response (HR)-like necrotic lesions are ideal experimental systems for elucidating molecular mechanisms involved in plant cell death and defence responses. Here we report identification of a rice lesion mimic mutant, spotted leaf 35 (spl35), and cloning of the causal gene by TAIL-PCR strategy. spl35 exhibited decreased chlorophyll content, higher accumulation of H2 O2 , up-regulated expression of defence-related marker genes, and enhanced resistance to both fungal and bacterial pathogens of rice. The SPL35 gene encodes a novel CUE (coupling of ubiquitin conjugation to ER degradation) domain-containing protein that is predominantly localized in cytosol, ER and unknown punctate compartment(s). SPL35 is constitutively expressed in all organs, and both overexpression and knockdown of SPL35 cause the lesion mimic phenotype. SPL35 directly interacts with the E2 protein OsUBC5a and the coatomer subunit delta proteins Delta-COP1 and Delta-COP2 through the CUE domain, and down-regulation of these interacting proteins also cause development of HR-like lesions resembling those in spl35 and activation of defence responses, indicating that SPL35 may be involved in the ubiquitination and vesicular trafficking pathways. Our findings provide insight into a role of SPL35 in regulating cell death and defence response in plants.
Collapse
Affiliation(s)
- Jian Ma
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Yongfei Wang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| | - Xiaoding Ma
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Lingzhi Meng
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Ruonan Jing
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| | - Fan Wang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| | - Shuai Wang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Zhijun Cheng
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Xin Zhang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Ling Jiang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| | - Jiulin Wang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Jie Wang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Zhichao Zhao
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Xiuping Guo
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Qibing Lin
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Fuqing Wu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Shanshan Zhu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Chuanyin Wu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Yulong Ren
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Cailin Lei
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Huqu Zhai
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Jianmin Wan
- Institute of Crop SciencesChinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
16
|
Bykov YS, Cohen N, Gabrielli N, Manenschijn H, Welsch S, Chlanda P, Kukulski W, Patil KR, Schuldiner M, Briggs JAG. High-throughput ultrastructure screening using electron microscopy and fluorescent barcoding. J Cell Biol 2019; 218:2797-2811. [PMID: 31289126 PMCID: PMC6683748 DOI: 10.1083/jcb.201812081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 01/24/2023] Open
Abstract
Genetic screens using high-throughput fluorescent microscopes have generated large datasets, contributing many cell biological insights. Such approaches cannot tackle questions requiring knowledge of ultrastructure below the resolution limit of fluorescent microscopy. Electron microscopy (EM) reveals detailed cellular ultrastructure but requires time-consuming sample preparation, limiting throughput. Here we describe a robust method for screening by high-throughput EM. Our approach uses combinations of fluorophores as barcodes to uniquely mark each cell type in mixed populations and correlative light and EM (CLEM) to read the barcode of each cell before it is imaged by EM. Coupled with an easy-to-use software workflow for correlation, segmentation, and computer image analysis, our method, called "MultiCLEM," allows us to extract and analyze multiple cell populations from each EM sample preparation. We demonstrate several uses for MultiCLEM with 15 different yeast variants. The methodology is not restricted to yeast, can be scaled to higher throughput, and can be used in multiple ways to enable EM to become a powerful screening technique.
Collapse
Affiliation(s)
- Yury S Bykov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Nir Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Gabrielli
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hetty Manenschijn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sonja Welsch
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Petr Chlanda
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wanda Kukulski
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kiran R Patil
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany .,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
17
|
Locke MN, Thorner J. Rab5 GTPases are required for optimal TORC2 function. J Cell Biol 2019; 218:961-976. [PMID: 30578283 PMCID: PMC6400565 DOI: 10.1083/jcb.201807154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/16/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Target of rapamycin complex-2 (TORC2), a conserved protein kinase complex, is an indispensable regulator of plasma membrane homeostasis. In budding yeast (Saccharomyces cerevisiae), the essential downstream effector of TORC2 is protein kinase Ypk1 and its paralog Ypk2. Muk1, a Rab5-specific guanine nucleotide exchange factor (GEF), was identified in our prior global screen for candidate Ypk1 targets. We confirm here that Muk1 is a substrate of Ypk1 and demonstrate that Ypk1-mediated phosphorylation stimulates Muk1 function in vivo. Strikingly, yeast lacking its two Rab5 GEFs (Muk1 and Vps9) or its three Rab5 paralogs (Vps21/Ypt51, Ypt52, and Ypt53) or overexpressing Msb3, a Rab5-directed GTPase-activating protein, all exhibit pronounced reduction in TORC2-mediated phosphorylation and activation of Ypk1. Vps21 coimmunoprecipitates with TORC2, and immuno-enriched TORC2 is less active in vitro in the absence of Rab5 GTPases. Thus, TORC2-dependent and Ypk1-mediated activation of Muk1 provides a control circuit for positive (self-reinforcing) up-regulation to sustain TORC2-Ypk1 signaling.
Collapse
Affiliation(s)
- Melissa N Locke
- Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
18
|
Karim MA, McNally EK, Samyn DR, Mattie S, Brett CL. Rab-Effector-Kinase Interplay Modulates Intralumenal Fragment Formation during Vacuole Fusion. Dev Cell 2018; 47:80-97.e6. [PMID: 30269949 DOI: 10.1016/j.devcel.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 07/01/2018] [Accepted: 09/01/2018] [Indexed: 01/17/2023]
Abstract
Upon vacuolar lysosome (or vacuole) fusion in S. cerevisiae, a portion of membrane is internalized and catabolized. Formation of this intralumenal fragment (ILF) is important for organelle protein and lipid homeostasis and remodeling. But how ILF formation is optimized for membrane turnover is not understood. Here, we show that fewer ILFs form when the interaction between the Rab-GTPase Ypt7 and its effector Vps41 (a subunit of the tethering complex HOPS) is interrupted by a point mutation (Ypt7-D44N). Subsequent phosphorylation of Vps41 by the casein kinase Yck3 prevents stabilization of trans-SNARE complexes needed for lipid bilayer pore formation. Impairing ILF formation prevents clearance of misfolded proteins from vacuole membranes and promotes organelle permeability and cell death. We propose that HOPS coordinates Rab, kinase, and SNARE cycles to modulate ILF size during vacuole fusion, regulating lipid and protein turnover important for quality control and membrane integrity.
Collapse
Affiliation(s)
- Mahmoud Abdul Karim
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Erin Kate McNally
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Dieter Ronny Samyn
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Sevan Mattie
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Christopher Leonard Brett
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada.
| |
Collapse
|
19
|
Langemeyer L, Fröhlich F, Ungermann C. Rab GTPase Function in Endosome and Lysosome Biogenesis. Trends Cell Biol 2018; 28:957-970. [PMID: 30025982 DOI: 10.1016/j.tcb.2018.06.007] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
Eukaryotic cells maintain a highly organized endolysosomal system. This system regulates the protein and lipid content of the plasma membrane, it participates in the intracellular quality control machinery and is needed for the efficient removal of damaged organelles. This complex network comprises an endosomal membrane system that feeds into the lysosomes, yet also allows recycling of membrane proteins, and probably lipids. Moreover, lysosomal degradation provides the cell with macromolecules for further growth. In this review, we focus primarily on the role of the small Rab GTPases Rab5 and Rab7 as organelle markers and interactors of multiple effectors on endosomes and lysosomes and highlight their role in membrane dynamics, particularly fusion along the endolysosomal pathway.
Collapse
Affiliation(s)
- Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics of the University of Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany; Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics of the University of Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany.
| |
Collapse
|
20
|
Herman EK, Ali M, Field MC, Dacks JB. Regulation of early endosomes across eukaryotes: Evolution and functional homology of Vps9 proteins. Traffic 2018; 19:546-563. [PMID: 29603841 PMCID: PMC6032885 DOI: 10.1111/tra.12570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
Endocytosis is a crucial process in eukaryotic cells. The GTPases Rab 5, 21 and 22 that mediate endocytosis are ancient eukaryotic features and all available evidence suggests retained conserved function. In animals and fungi, these GTPases are regulated in part by proteins possessing Vps9 domains. However, the diversity, evolution and functions of Vps9 proteins beyond animals or fungi are poorly explored. Here we report a comprehensive analysis of the Vps9 family of GTPase regulators, combining molecular evolutionary data with functional characterization in the non-opisthokont model organism Trypanosoma brucei. At least 3 subfamilies, Alsin, Varp and Rabex5 + GAPVD1, are found across eukaryotes, suggesting that all are ancient features of regulation of endocytic Rab protein function. There are examples of lineage-specific Vps9 subfamily member expansions and novel domain combinations, suggesting diversity in precise regulatory mechanisms between individual lineages. Characterization of the Rabex5 + GAPVD1 and Alsin orthologues in T. brucei demonstrates that both proteins are involved in endocytosis, and that simultaneous knockdown prevents membrane recruitment of Rab5 and Rab21, indicating conservation of function. These data demonstrate that, for the Vps9-domain family at least, modulation of Rab function is mediated by evolutionarily conserved protein-protein interactions.
Collapse
Affiliation(s)
- Emily K. Herman
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
| | - Moazzam Ali
- School of Life SciencesUniversity of DundeeDundeeUK
| | | | - Joel B. Dacks
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
| |
Collapse
|
21
|
Wilson ZN, Scott AL, Dowell RD, Odorizzi G. PI(3,5)P 2 controls vacuole potassium transport to support cellular osmoregulation. Mol Biol Cell 2018; 29:1718-1731. [PMID: 29791245 PMCID: PMC6080712 DOI: 10.1091/mbc.e18-01-0015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lysosomes are dynamic organelles with critical roles in cellular physiology. The lysosomal signaling lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) is a key regulator that has been implicated to control lysosome ion homeostasis, but the scope of ion transporters targeted by PI(3,5)P2 and the purpose of this regulation is not well understood. Through an unbiased screen in Saccharomyces cerevisiae, we identified loss-of-function mutations in the vacuolar H+-ATPase (V-ATPase) and in Vnx1, a vacuolar monovalent cation/proton antiporter, as suppressor mutations that relieve the growth defects and osmotic swelling of vacuoles (lysosomes) in yeast lacking PI(3,5)P2. We observed that depletion of PI(3,5)P2 synthesis in yeast causes a robust accumulation of multiple cations, most notably an ∼85 mM increase in the cellular concentration of potassium, a critical ion used by cells to regulate osmolarity. The accumulation of potassium and other cations in PI(3,5)P2-deficient yeast is relieved by mutations that inactivate Vnx1 or inactivate the V-ATPase and by mutations that increase the activity of a vacuolar cation export channel, Yvc1. Collectively, our data demonstrate that PI(3,5)P2 signaling orchestrates vacuole/lysosome cation transport to aid cellular osmoregulation.
Collapse
Affiliation(s)
- Zachary N Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| | - Amber L Scott
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| | - Robin D Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| |
Collapse
|
22
|
Karim MA, Samyn DR, Mattie S, Brett CL. Distinct features of multivesicular body-lysosome fusion revealed by a new cell-free content-mixing assay. Traffic 2017; 19:138-149. [DOI: 10.1111/tra.12543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Sevan Mattie
- Department of Biology; Concordia University; Montreal Canada
| | | |
Collapse
|
23
|
Gadila SKG, Kim K. Cargo trafficking from the trans-Golgi network towards the endosome. Biol Cell 2016; 108:205-18. [DOI: 10.1111/boc.201600001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kyoungtae Kim
- Department of Biology; Missouri State University; Springfield MO 65807 USA
| |
Collapse
|
24
|
Nickerson DP, Merz AJ. LUCID: A Quantitative Assay of ESCRT-Mediated Cargo Sorting into Multivesicular Bodies. Traffic 2015; 16:1318-29. [PMID: 26424513 DOI: 10.1111/tra.12331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 11/30/2022]
Abstract
Endosomes are transportation nodes, mediating selective transport of soluble and transmembrane cargos to and from the Golgi apparatus, plasma membrane and lysosomes. As endosomes mature to become multivesicular bodies (MVBs), Endosomal Sorting Complexes Required for Transport (ESCRTs) selectively incorporate transmembrane cargos into vesicles that bud into the endosome lumen. Luminal vesicles and their cargoes are targeted for destruction when MVBs fuse with lysosomes. Common assays of endosomal luminal targeting, including fluorescence microscopy and monitoring of proteolytic cargo maturation, possess significant limitations. We present a quantitative assay system called LUCID (LUCiferase reporter of Intraluminal Deposition) that monitors exposure of chimeric luciferase-cargo reporters to cytosol. Luciferase-chimera signal increases when sorting to the endosome lumen is disrupted, and silencing of signal from the chimera depends upon luminal delivery of the reporter rather than proteolytic degradation. The system presents several advantages, including rapidity, microscale operation and a high degree of reproducibility that enables detection of subtle phenotypic differences. Luciferase reporters provide linear signal over an extremely broad dynamic range, allowing analysis of reporter traffic even at anemic levels of expression. Furthermore, LUCID reports transport kinetics when applied to inducible trafficking reporters.
Collapse
Affiliation(s)
- Daniel P Nickerson
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-7350, USA
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-7350, USA.,Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195-7350, USA
| |
Collapse
|