1
|
González B, Mirzaei M, Basu S, Pujari AN, Vandermeulen MD, Prabhakar A, Cullen PJ. Turnover and bypass of p21-activated kinase during Cdc42-dependent MAPK signaling in yeast. J Biol Chem 2023; 299:105297. [PMID: 37774975 PMCID: PMC10641623 DOI: 10.1016/j.jbc.2023.105297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 10/01/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular behaviors, including the response to stress and cell differentiation, and are highly conserved across eukaryotes. MAPK pathways can be activated by the interaction between the small GTPase Cdc42p and the p21-activated kinase (Ste20p in yeast). By studying MAPK pathway regulation in yeast, we recently found that the active conformation of Cdc42p is regulated by turnover, which impacts the activity of the pathway that regulates filamentous growth (fMAPK). Here, we show that Ste20p is regulated in a similar manner and is turned over by the 26S proteasome. This turnover did not occur when Ste20p was bound to Cdc42p, which presumably stabilized the protein to sustain MAPK pathway signaling. Although Ste20p is a major component of the fMAPK pathway, genetic approaches here identified a Ste20p-independent branch of signaling. Ste20p-independent signaling partially required the fMAPK pathway scaffold and Cdc42p-interacting protein, Bem4p, while Ste20p-dependent signaling required the 14-3-3 proteins, Bmh1p and Bmh2p. Interestingly, Ste20p-independent signaling was inhibited by one of the GTPase-activating proteins for Cdc42p, Rga1p, which unexpectedly dampened basal but not active fMAPK pathway activity. These new regulatory features of the Rho GTPase and p21-activated kinase module may extend to related pathways in other systems.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Mahnoosh Mirzaei
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Sukanya Basu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Atindra N Pujari
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Matthew D Vandermeulen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Aditi Prabhakar
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Paul J Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
2
|
Yuan W, Weaver YM, Earnest S, Taylor CA, Cobb MH, Weaver BP. Modulating p38 MAPK signaling by proteostasis mechanisms supports tissue integrity during growth and aging. Nat Commun 2023; 14:4543. [PMID: 37507441 PMCID: PMC10382525 DOI: 10.1038/s41467-023-40317-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The conserved p38 MAPK family is activated by phosphorylation during stress responses and inactivated by phosphatases. C. elegans PMK-1 p38 MAPK initiates innate immune responses and blocks development when hyperactivated. Here we show that PMK-1 signaling is enhanced during early aging by modulating the stoichiometry of non-phospho-PMK-1 to promote tissue integrity and longevity. Loss of pmk-1 function accelerates progressive declines in neuronal integrity and lysosome function compromising longevity which has both cell autonomous and cell non-autonomous contributions. CED-3 caspase cleavage limits phosphorylated PMK-1. Enhancing p38 signaling with caspase cleavage-resistant PMK-1 protects lysosomal and neuronal integrity extending a youthful phase. PMK-1 works through a complex transcriptional program to regulate lysosome formation. During early aging, the absolute phospho-p38 amount is maintained but the reservoir of non-phospho-p38 diminishes to enhance signaling without hyperactivation. Our findings show that modulating the stoichiometry of non-phospho-p38 dynamically supports tissue-homeostasis during aging without hyper-activation of stress response.
Collapse
Affiliation(s)
- Wang Yuan
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yi M Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Svetlana Earnest
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Clinton A Taylor
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P Weaver
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Gonz Lez B, Mirzaei M, Basu S, Prabhakar A, Cullen PJ. New Features Surrounding the Cdc42-Ste20 Module that Regulates MAP Kinase Signaling in Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530426. [PMID: 36909494 PMCID: PMC10002611 DOI: 10.1101/2023.02.28.530426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular responses, including the response to stress and cell differentiation, and are highly conserved across eukaryotes from yeast to humans. In yeast, the canonical activation of several MAPK pathways includes the interaction of the small GTPase Cdc42p with the p21-activated kinase (PAK) Ste20p. We recently found that the active conformation of Cdc42p is regulated by turnover, which impacts the activity of the pathway that regulates filamentous growth (fMAPK). Here, we show that Ste20p is turned over by the 26S proteasome. Ste20p was stabilized when bound to Cdc42p, presumably to sustain MAPK pathway signaling. Ste20p is a major conduit by which signals flow through the fMAPK pathway; however, by genetic approaches we also identified a Ste20p-independent branch of the fMAPK pathway. Ste20p-dependent signaling required the 14-3-3 proteins, Bmh1p and Bmh2p, while Ste20p-independent signaling required the fMAPK pathway adaptor and Cdc42p-interacting protein, Bem4p. Ste20p-independent signaling was inhibited by one of the GTPase-activating proteins for Cdc42p in the fMAPK pathway, Rga1p, which also dampened basal but not active fMAPK pathway activity. Finally, the polarity adaptor and Cdc42p-interacting protein, Bem1p, which also regulates the fMAPK pathway, interacts with the tetra-span protein Sho1p, connecting a sensor at the plasma membrane to a protein that regulates the GTPase module. Collectively, these data reveal new regulatory features surrounding a Rho-PAK module that may extend to other pathways that control cell differentiation.
Collapse
|
4
|
A focus on yeast mating: From pheromone signaling to cell-cell fusion. Semin Cell Dev Biol 2023; 133:83-95. [PMID: 35148940 DOI: 10.1016/j.semcdb.2022.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Cells live in a chemical environment and are able to orient towards chemical cues. Unicellular haploid fungal cells communicate by secreting pheromones to reproduce sexually. In the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, pheromonal communication activates similar pathways composed of cognate G-protein-coupled receptors and downstream small GTPase Cdc42 and MAP kinase cascades. Local pheromone release and sensing, at a mobile surface polarity patch, underlie spatial gradient interpretation to form pairs between two cells of distinct mating types. Concentration of secretion at the point of cell-cell contact then leads to local cell wall digestion for cell fusion, forming a diploid zygote that prevents further fusion attempts. A number of asymmetries between mating types may promote efficiency of the system. In this review, we present our current knowledge of pheromone signaling in the two model yeasts, with an emphasis on how cells decode the pheromone signal spatially and ultimately fuse together. Though overall pathway architectures are similar in the two species, their large evolutionary distance allows to explore how conceptually similar solutions to a general biological problem can arise from divergent molecular components.
Collapse
|
5
|
Isc10, an inhibitor of the Smk1 MAPK, prevents activation-loop autophosphorylation and substrate phosphorylation through separate mechanisms. J Biol Chem 2022; 298:102450. [PMID: 36063999 PMCID: PMC9558048 DOI: 10.1016/j.jbc.2022.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Many eukaryotic protein kinases are activated by the intramolecular autophosphorylation of activation loop residues. Smk1 is a meiosis-specific mitogen-activated protein kinase (MAPK) in yeast that autophosphorylates its activation loop tyrosine and thereby upregulates catalytic output. This reaction is controlled by an inhibitor, Isc10, that binds the MAPK during meiosis I and an activator, Ssp2, that binds Smk1/Isc10 during meiosis II. Upon completion of the meiotic divisions, Isc10 is degraded, and Smk1 undergoes autophosphorylation to generate the high activity form of the MAPK that controls spore formation. How Isc10 inhibits Smk1 is not clear. Here, we use a bacterial coexpression/reconstitution system to define a domain in the carboxy-terminal half of Isc10 that specifically inhibits Smk1 autophosphorylation. Nevertheless, Smk1 bound by this domain is able to phosphorylate other substrates, and it phosphorylates the amino-terminal half of Isc10 on serine 97. In turn, the phosphorylated motif in Isc10 inhibits the Smk1 active site. These data show that Isc10 inhibits autophosphorylation and the phosphorylation of substrates by separate mechanisms. Furthermore, we demonstrate Isc10 can inhibit the autophosphorylation of the mammalian intestinal cell kinase ICK1 (also known as CILK1), suggesting a conserved mechanism of action. These findings define a novel class of developmentally regulated molecules that prevent the self-activation of MAPKs and MAPK-like enzymes.
Collapse
|
6
|
González-Rubio G, Sellers-Moya Á, Martín H, Molina M. A walk-through MAPK structure and functionality with the 30-year-old yeast MAPK Slt2. Int Microbiol 2021; 24:531-543. [PMID: 33993419 DOI: 10.1007/s10123-021-00183-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved signaling proteins involved in the regulation of most eukaryotic cellular processes. They are downstream components of essential signal transduction pathways activated by the external stimuli, in which the signal is conveyed through phosphorylation cascades. The excellent genetic and biochemical tractability of simple eukaryotes such as Saccharomyces cerevisiae has significantly contributed to gain fundamental information into the physiology of these key proteins. The budding yeast MAPK Slt2 was identified 30 years ago and was later revealed as a fundamental element of the cell wall integrity (CWI) pathway, one of the five MAPK routes of S. cerevisiae. As occurs with other MAPKs, whereas Slt2 displays the core typical structural traits of eukaryotic protein kinases, it also features conserved domains among MAPKs that allow an exquisite spatio-temporal regulation of their activity and binding to activating kinases, downregulatory phosphatases, or nuclear transcription factors. Additionally, Slt2 bears a regulatory extra C-terminal tail unique among S. cerevisiae MAPKs. Here, we review the structural and functional basis for the signaling role of Slt2 in the context of the molecular architecture of this important family of protein kinases.
Collapse
Affiliation(s)
- Gema González-Rubio
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Ángela Sellers-Moya
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Humberto Martín
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
7
|
Differential Role of Threonine and Tyrosine Phosphorylation in the Activation and Activity of the Yeast MAPK Slt2. Int J Mol Sci 2021; 22:ijms22031110. [PMID: 33498635 PMCID: PMC7866135 DOI: 10.3390/ijms22031110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
The Mitogen-Activated Protein Kinase (MAPK) Slt2 is central to signaling through the yeast Cell Wall Integrity (CWI) pathway. MAPKs are regulated by phosphorylation at both the threonine and tyrosine of the conserved TXY motif within the activation loop (T190/Y192 in Slt2). Since phosphorylation at both sites results in the full activation of MAPKs, signaling through MAPK pathways is monitored with antibodies that detect dually phosphorylated forms. However, most of these antibodies also recognize monophosphorylated species, whose relative abundance and functionality are diverse. By using different phosphospecific antibodies and phosphate-affinity (Phos-tag) analysis on distinct Slt2 mutants, we determined that Y192- and T190-monophosphorylated species coexist with biphosphorylated Slt2, although most of the Slt2 pool remains unphosphorylated following stress. Among the monophosphorylated forms, only T190 exhibited biological activity. Upon stimulation, Slt2 is first phosphorylated at Y192, mainly by the MAPKK Mkk1, and this phosphorylation is important for the subsequent T190 phosphorylation. Similarly, dephosphorylation of Slt2 by the Dual Specificity Phosphatase (DSP) Msg5 is ordered, with dephosphorylation of T190 depending on previous Y192 dephosphorylation. Whereas Y192 phosphorylation enhances the Slt2 catalytic activity, T190 is essential for this activity. The conserved T195 residue is also critical for Slt2 functionality. Mutations that abolish the activity of Slt2 result in a high increase in inactive Y192-monophosphorylated Slt2. The coexistence of different Slt2 phosphoforms with diverse biological significance highlights the importance of the precise detection of the Slt2 phosphorylation status.
Collapse
|
8
|
Rangarajan N, Kapoor I, Li S, Drossopoulos P, White KK, Madden VJ, Dohlman HG. Potassium starvation induces autophagy in yeast. J Biol Chem 2020; 295:14189-14202. [PMID: 32788210 DOI: 10.1074/jbc.ra120.014687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/02/2020] [Indexed: 01/04/2023] Open
Abstract
Autophagy is a conserved process that recycles cellular contents to promote survival. Although nitrogen limitation is the canonical inducer of autophagy, recent studies have revealed several other nutrients important to this process. In this study, we used a quantitative, high-throughput assay to identify potassium starvation as a new and potent inducer of autophagy in the yeast Saccharomyces cerevisiae We found that potassium-dependent autophagy requires the core pathway kinases Atg1, Atg5, and Vps34, and other components of the phosphatidylinositol 3-kinase complex. Transmission EM revealed abundant autophagosome formation in response to both stimuli. RNA-Seq indicated distinct transcriptional responses: nitrogen affects transport of ions such as copper, whereas potassium targets the organization of other cellular components. Thus, nitrogen and potassium share the ability to influence molecular supply and demand but do so in different ways. Both inputs promote catabolism through bulk autophagy, but result in distinct mechanisms of cellular remodeling and synthesis.
Collapse
Affiliation(s)
- Nambirajan Rangarajan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ishani Kapoor
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shuang Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter Drossopoulos
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristen K White
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victoria J Madden
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Negative Feedback Phosphorylation of Gγ Subunit Ste18 and the Ste5 Scaffold Synergistically Regulates MAPK Activation in Yeast. Cell Rep 2019; 23:1504-1515. [PMID: 29719261 PMCID: PMC5987779 DOI: 10.1016/j.celrep.2018.03.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/15/2017] [Accepted: 03/29/2018] [Indexed: 01/08/2023] Open
Abstract
Heterotrimeric G proteins (Gαβγ) are essential transducers in G protein signaling systems in all eukaryotes. In yeast, G protein signaling differentially activates mitogen-activated protein kinases (MAPKs)—Fus3 and Kss1—a phenomenon controlled by plasma membrane (PM) association of the scaffold protein Ste5. Here, we show that phosphorylation of the yeast Gγ subunit (Ste18), together with Fus3 docking on Ste5, controls the rate and stability of Ste5/PM association. Disruption of either element alone by point mutation has mild but reciprocal effects on MAPK activation. Disabling both elements results in ultra-fast and stable bulk Ste5/PM localization and Fus3 activation that is 6 times faster and 4 times more amplified compared to wild-type cells. These results further resolve the mechanism by which MAPK negative feedback phosphorylation controls pathway activation and provides compelling evidence that Gγ subunits can serve as intrinsic regulators of G protein signaling.
Collapse
|
10
|
Rangarajan N, Gordy CL, Askew L, Bevill SM, Elston TC, Errede B, Hurst JH, Kelley JB, Sheetz JB, Suzuki SK, Valentin NH, Young E, Dohlman HG. Systematic analysis of F-box proteins reveals a new branch of the yeast mating pathway. J Biol Chem 2019; 294:14717-14731. [PMID: 31399514 DOI: 10.1074/jbc.ra119.010063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/06/2019] [Indexed: 11/06/2022] Open
Abstract
The mating pathway in yeast Saccharomyces cerevisiae has long been used to reveal new mechanisms of signal transduction. The pathway comprises a pheromone receptor, a heterotrimeric G protein, and intracellular effectors of morphogenesis and transcription. Polarized cell growth, in the direction of a potential mating partner, is accomplished by the G-protein βγ subunits and the small G-protein Cdc42. Transcription induction, needed for cell-cell fusion, is mediated by Gβγ and the mitogen-activated protein kinase (MAPK) scaffold protein Ste5. A potential third pathway is initiated by the G-protein α subunit Gpa1. Gpa1 signaling was shown previously to involve the F-box adaptor protein Dia2 and an endosomal effector protein, the phosphatidylinositol 3-kinase Vps34. Vps34 is also required for proper vacuolar sorting and autophagy. Here, using a panel of reporter assays, we demonstrate that mating pheromone stimulates vacuolar targeting of a cytoplasmic reporter protein and that this process depends on Vps34. Through a systematic analysis of F-box deletion mutants, we show that Dia2 is required to sustain pheromone-induced vacuolar targeting. We also found that other F-box proteins selectively regulate morphogenesis (Ydr306, renamed Pfu1) and transcription (Ucc1). These findings point to the existence of a new and distinct branch of the pheromone-signaling pathway, one that likely leads to vacuolar engulfment of cytoplasmic proteins and recycling of cellular contents in preparation for mating.
Collapse
Affiliation(s)
- Nambirajan Rangarajan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Claire L Gordy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lauren Askew
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Samantha M Bevill
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Beverly Errede
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jillian H Hurst
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joshua B Kelley
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joshua B Sheetz
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sara Kimiko Suzuki
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Natalie H Valentin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Everett Young
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
11
|
Shellhammer JP, Pomeroy AE, Li Y, Dujmusic L, Elston TC, Hao N, Dohlman HG. Quantitative analysis of the yeast pheromone pathway. Yeast 2019; 36:495-518. [PMID: 31022772 DOI: 10.1002/yea.3395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 01/04/2023] Open
Abstract
The pheromone response pathway of the yeast Saccharomyces cerevisiae is a well-established model for the study of G proteins and mitogen-activated protein kinase (MAPK) cascades. Our longstanding ability to combine sophisticated genetic approaches with established functional assays has provided a thorough understanding of signalling mechanisms and regulation. In this report, we compare new and established methods used to quantify pheromone-dependent MAPK phosphorylation, transcriptional induction, mating morphogenesis, and gradient tracking. These include both single-cell and population-based assays of activity. We describe several technical advances, provide example data for benchmark mutants, highlight important differences between newer and established methodologies, and compare the advantages and disadvantages of each as applied to the yeast model. Quantitative measurements of pathway activity have been used to develop mathematical models and reveal new regulatory mechanisms in yeast. It is our expectation that experimental and computational approaches developed in yeast may eventually be adapted to human systems biology and pharmacology.
Collapse
Affiliation(s)
- James P Shellhammer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Amy E Pomeroy
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yang Li
- Division of Biological Sciences, University of California San Diego, San Diego, CA, 92093, USA
| | - Lorena Dujmusic
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nan Hao
- Division of Biological Sciences, University of California San Diego, San Diego, CA, 92093, USA
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
12
|
González-Rubio G, Fernández-Acero T, Martín H, Molina M. Mitogen-Activated Protein Kinase Phosphatases (MKPs) in Fungal Signaling: Conservation, Function, and Regulation. Int J Mol Sci 2019; 20:ijms20071709. [PMID: 30959830 PMCID: PMC6479966 DOI: 10.3390/ijms20071709] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are key mediators of signaling in fungi, participating in the response to diverse stresses and in developmental processes. Since the precise regulation of MAPKs is fundamental for cell physiology, fungi bear dual specificity phosphatases (DUSPs) that act as MAP kinase phosphatases (MKPs). Whereas fungal MKPs share characteristic domains of this phosphatase subfamily, they also have specific interaction motifs and particular activation mechanisms, which, for example, allow some yeast MKPs, such as Saccharomyces cerevisiae Sdp1, to couple oxidative stress with substrate recognition. Model yeasts show that MKPs play a key role in the modulation of MAPK signaling flow. Mutants affected in S. cerevisiae Msg5 or in Schizosaccharomyces pombe Pmp1 display MAPK hyperactivation and specific phenotypes. MKPs from virulent fungi, such as Candida albicans Cpp1, Fusarium graminearum Msg5, and Pyricularia oryzae Pmp1, are relevant for pathogenicity. Apart from transcriptional regulation, MKPs can be post-transcriptionally regulated by RNA-binding proteins such as Rnc1, which stabilizes the S. pombePMP1 mRNA. P. oryzae Pmp1 activity and S. cerevisiae Msg5 stability are regulated by phosphorylation and ubiquitination, respectively. Therefore, fungi offer a platform to gain insight into the regulatory mechanisms that control MKPs.
Collapse
Affiliation(s)
- Gema González-Rubio
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Teresa Fernández-Acero
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Humberto Martín
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - María Molina
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Fraga JS, Sárkány Z, Silva A, Correia I, Pereira PJB, Macedo-Ribeiro S. Genetic code ambiguity modulates the activity of a C. albicans MAP kinase linked to cell wall remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:654-661. [PMID: 30797104 DOI: 10.1016/j.bbapap.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/28/2022]
Abstract
The human fungal pathogen Candida albicans ambiguously decodes the universal leucine CUG codon predominantly as serine but also as leucine. C. albicans has a high capacity to survive and proliferate in adverse environments but the rate of leucine incorporation fluctuates in response to different stress conditions. C. albicans is adapted to tolerate this ambiguous translation through a mechanism that combines drastic decrease in CUG usage and reduction of CUG-encoded residues in conserved positions in the protein sequences. However, in a few proteins, the residues encoded by CUG codons are found in strictly conserved positions, suggesting that this genetic code alteration might have a functional impact. One such example is Cek1, a central signaling protein kinase that contains a single CUG-encoded residue at a conserved position, whose identity might regulate the correct flow of information across the MAPK cascade. Here we show that insertion of a leucine at the CUG-encoded position decreases the stability of Cek1, apparently without major structural alterations. In contrast, incorporation of a serine residue at the CUG position induces the autophosphorylation of the conserved tyrosine residue of the Cek1 231TEY233 motif, and increases its intrinsic kinase activity in vitro. These findings show that CUG ambiguity modulates the activity of Cek1, a key kinase directly linked to morphogenesis and virulence in C. albicans.
Collapse
Affiliation(s)
- Joana S Fraga
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Zsuzsa Sárkány
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Alexandra Silva
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Inês Correia
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Pedro José Barbosa Pereira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
14
|
Winters MJ, Pryciak PM. MAPK modulation of yeast pheromone signaling output and the role of phosphorylation sites in the scaffold protein Ste5. Mol Biol Cell 2019; 30:1037-1049. [PMID: 30726174 PMCID: PMC6589907 DOI: 10.1091/mbc.e18-12-0793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) mediate numerous eukaryotic signaling responses. They also can modulate their own signaling output via positive or negative feedback loops. In the yeast pheromone response pathway, the MAPK Fus3 triggers negative feedback that dampens its own activity. One target of this feedback is Ste5, a scaffold protein that promotes Fus3 activation. Binding of Fus3 to a docking motif (D motif) in Ste5 causes signal dampening, which was proposed to involve a central cluster of phosphorylation sites in Ste5. Here, we reanalyzed the role of these central sites. Contrary to prior claims, phosphorylation-mimicking mutations at these sites did not impair signaling. Also, the hyperactive signaling previously observed when these sites were mutated to nonphosphorylatable residues arose from their replacement with valine residues and was not observed with other substitutes. Instead, a cluster of N-terminal sites in Ste5, not the central sites, is required for the rapid dampening of initial responses. Further results suggest that the role of the Fus3 D motif is most simply explained by a tethering effect that promotes Ste5 phosphorylation, rather than an allosteric effect proposed to regulate Fus3 activity. These findings substantially revise our understanding of how MAPK feedback attenuates scaffold-mediated signaling in this model pathway.
Collapse
Affiliation(s)
- Matthew J Winters
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Peter M Pryciak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
15
|
Serrano A, Illgen J, Brandt U, Thieme N, Letz A, Lichius A, Read ND, Fleißner A. Spatio-temporal MAPK dynamics mediate cell behavior coordination during fungal somatic cell fusion. J Cell Sci 2018; 131:jcs.213462. [PMID: 29592970 DOI: 10.1242/jcs.213462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/20/2018] [Indexed: 01/17/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are conserved regulators of proliferation, differentiation and adaptation in eukaryotic cells. Their activity often involves changes in their subcellular localization, indicating an important role for these spatio-temporal dynamics in signal transmission. A striking model illustrating these dynamics is somatic cell fusion in Neurospora crassa Germinating spores of this fungus rapidly alternate between signal sending and receiving, thereby establishing a cell-cell dialog, which involves the alternating membrane recruitment of the MAPK MAK-2 in both fusion partners. Here, we show that the dynamic translocation of MAK-2 is essential for coordinating the behavior of the fusion partners before physical contact. The activation and function of the kinase strongly correlate with its subcellular localization, indicating a crucial contribution of the MAPK dynamics in establishing regulatory feedback loops, which establish the oscillatory signaling mode. In addition, we provide evidence that MAK-2 not only contributes to cell-cell communication, but also mediates cell-cell fusion. The MAK-2 dynamics significantly differ between these two processes, suggesting a role for the MAPK in switching of the cellular program between communication and fusion.
Collapse
Affiliation(s)
- Antonio Serrano
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Julia Illgen
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Nils Thieme
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Anja Letz
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Alexander Lichius
- Institute of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Nick D Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
16
|
Winters MJ, Pryciak PM. Analysis of the thresholds for transcriptional activation by the yeast MAP kinases Fus3 and Kss1. Mol Biol Cell 2018; 29:669-682. [PMID: 29321252 PMCID: PMC6004581 DOI: 10.1091/mbc.e17-10-0578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 12/31/2022] Open
Abstract
Signaling in the pheromone response pathway of budding yeast activates two distinct MAP kinases (MAPKs), Fus3 and Kss1. Either MAPK alone can mediate pheromone-induced transcription, but it has been unclear to what degree each one contributes to transcriptional output in wild-type cells. Here, we report that transcription reflects the ratio of active to inactive MAPK, and not simply the level of active MAPK. For Kss1 the majority of MAPK molecules must be converted to the active form, whereas for Fus3 only a small minority must be activated. These different activation thresholds reflect two opposing effects of each MAPK, in which the inactive forms inhibit transcription, whereas the active forms promote transcription. Moreover, negative feedback from Fus3 limits activation of Kss1 so that it does not meet its required threshold in wild-type cells but does so only when hyperactivated in cells lacking Fus3. The results suggest that the normal transcriptional response involves asymmetric contributions from the two MAPKs, in which pheromone signaling reduces the negative effect of Kss1 while increasing the positive effect of Fus3. These findings reveal new functional distinctions between these MAPKs, and help illuminate how inhibitory functions shape positive pathway outputs in both pheromone and filamentation pathways.
Collapse
Affiliation(s)
- Matthew J Winters
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Peter M Pryciak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
17
|
Kompella PS, Moses AM, Peisajovich SG. Introduction of Premature Stop Codons as an Evolutionary Strategy To Rescue Signaling Network Function. ACS Synth Biol 2017; 6:446-454. [PMID: 27935292 DOI: 10.1021/acssynbio.6b00142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cellular concentrations of key components of signaling networks are tightly regulated, as deviations from their optimal ranges can have negative effects on signaling function. For example, overexpression of the yeast mating pathway mitogen-activated protein kinase (MAPK) Fus3 decreases pathway output, in part by sequestering individual components away from functional multiprotein complexes. Using a synthetic biology approach, we investigated potential mechanisms by which selection could compensate for a decrease in signaling activity caused by overexpression of Fus3. We overexpressed a library of random mutants of Fus3 and used cell sorting to select variants that rescued mating pathway activity. Our results uncovered that one remarkable way in which selection can compensate for protein overexpression is by introducing premature stop codons at permitted positions. Because of the low efficiency with which premature stop codons are read through, the resulting cellular concentration of active Fus3 returns to values within the range required for proper signaling. Our results underscore the importance of interpreting genotypic variation at the systems rather than at the individual gene level, as mutations can have opposite effects on protein and network function.
Collapse
Affiliation(s)
- Purnima S. Kompella
- Department of Cell and Systems
Biology, University of Toronto 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | - Alan M. Moses
- Department of Cell and Systems
Biology, University of Toronto 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | - Sergio G. Peisajovich
- Department of Cell and Systems
Biology, University of Toronto 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
18
|
Dyjack N, Azeredo-Tseng C, Yildirim N. Mathematical modeling reveals differential regulation of MAPK activity by phosphatase proteins in the yeast pheromone response pathway. MOLECULAR BIOSYSTEMS 2017; 13:1323-1335. [DOI: 10.1039/c7mb00213k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To prevent indefinite cellular responses to external signals, cells utilize various adaptation mechanisms.
Collapse
Affiliation(s)
- Nathan Dyjack
- Division of Natural Sciences
- New College of Florida
- Sarasota
- USA
| | | | | |
Collapse
|