1
|
Ni KD, Wei CG, Zhu JQ, Mu CK, Wang CL, Hou CC. Transcriptome analysis of different stages of testis development in Portunus trituberculatus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101453. [PMID: 40010143 DOI: 10.1016/j.cbd.2025.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/28/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
The swimming crab (Portunus trituberculatus) is an important marine economic species, however its artificial breeding yield is relatively low. Currently, the main challenge faced by the swimming crab seed industry is the reliance on wild populations for seed cultivation, which results in unstable yield and quality, affecting the healthy development of the crab farming industry to some extent. The quality of germplasm resources depends on the quality of gametes, and the quality of sperm depends on the orderly genetic regulation process of spermatogenesis. Therefore, elucidating the genetic regulatory mechanisms of spermatogenesis is of great significance for improving the germplasm resources of P. trituberculatus. To gain a deeper understanding of this process, we conducted a comparative transcriptome study on the testis of the swimming crab at different developmental stages. This study aims to identify key genes that regulate testicular development. We performed paraffin section identification on the testicular tissue of male crabs and conducted transcriptome analysis on the testicular tissue at five different developmental stages and somatic cells. Through differential expression analysis, we screened a total of 31,788 differentially expressed genes (DEGs) from stages I to VI. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we found that these DEGs were significantly enriched in 15 pathways, including important functional pathways such as the adrenergic signaling pathway, HIF-1 signaling pathway, and TGF-β signaling pathway. GO analysis results showed that calcium ion homeostasis and cell skeleton-related activities were significantly enriched in stage II. Further protein-protein interaction network analysis revealed 68 hub genes, including 13 eukaryotic initiation factors, 6 Ras superfamily members, and 6 genes related to cell division. In addition, genes such as Actin, Myosin, and Nup50 consistently showed high expression at all developmental stages, while genes related to calcium ion homeostasis, such as CaM, significantly increased in expression during stage II. Hsp90 and apoptosis-related genes had higher expression in stage IV, while Smad4 had higher expression in stage V. These results suggest that stage II of the swimming crab sperm development may be a critical period for spermatogenesis, and stage IV may be an important period for regulating sperm quality and quantity. This study not only provides a foundation for further research on the molecular mechanisms of testicular development and spermatogenesis in the swimming crab but also offers theoretical support for improving breeding yield, which has significant practical application value.
Collapse
Affiliation(s)
- Kai-Di Ni
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chao-Guang Wei
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Jun-Quan Zhu
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chang-Kao Mu
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chun-Lin Wang
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Cong-Cong Hou
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
3
|
Thomas FB, Omnus DJ, Bader JM, Chung GH, Kono N, Stefan CJ. Tricalbin proteins regulate plasma membrane phospholipid homeostasis. Life Sci Alliance 2022; 5:5/8/e202201430. [PMID: 35440494 PMCID: PMC9018018 DOI: 10.26508/lsa.202201430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
The evolutionarily conserved extended synaptotagmin (E-Syt) proteins are calcium-activated lipid transfer proteins that function at contacts between the ER and plasma membrane (ER-PM contacts). However, roles of the E-Syt family members in PM lipid organisation remain incomplete. Among the E-Syt family, the yeast tricalbin (Tcb) proteins are essential for PM integrity upon heat stress, but it is not known how they contribute to PM maintenance. Using quantitative lipidomics and microscopy, we find that the Tcb proteins regulate phosphatidylserine homeostasis at the PM. Moreover, upon heat-induced membrane stress, Tcb3 co-localises with the PM protein Sfk1 that is implicated in PM phospholipid asymmetry and integrity. The Tcb proteins also control the PM targeting of the known phosphatidylserine effector Pkc1 upon heat-induced stress. Phosphatidylserine has evolutionarily conserved roles in PM organisation, integrity, and repair. We propose that phospholipid regulation is an ancient essential function of E-Syt family members required for PM integrity.
Collapse
Affiliation(s)
- Ffion B Thomas
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Deike J Omnus
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jakob M Bader
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Gary Hc Chung
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Christopher J Stefan
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
4
|
Zmurchok C, Collette J, Rajagopal V, Holmes WR. Membrane Tension Can Enhance Adaptation to Maintain Polarity of Migrating Cells. Biophys J 2020; 119:1617-1629. [PMID: 32976760 PMCID: PMC7642449 DOI: 10.1016/j.bpj.2020.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
Migratory cells are known to adapt to environments that contain wide-ranging levels of chemoattractant. Although biochemical models of adaptation have been previously proposed, here, we discuss a different mechanism based on mechanosensing, in which the interaction between biochemical signaling and cell tension facilitates adaptation. We describe and analyze a model of mechanochemical-based adaptation coupling a mechanics-based physical model of cell tension coupled with the wave-pinning reaction-diffusion model for Rac GTPase activity. The mathematical analysis of this model, simulations of a simplified one-dimensional cell geometry, and two-dimensional finite element simulations of deforming cells reveal that as a cell protrudes under the influence of high stimulation levels, tension-mediated inhibition of Rac signaling causes the cell to polarize even when initially overstimulated. Specifically, tension-mediated inhibition of Rac activation, which has been experimentally observed in recent years, facilitates this adaptation by countering the high levels of environmental stimulation. These results demonstrate how tension-related mechanosensing may provide an alternative (and potentially complementary) mechanism for cell adaptation.
Collapse
Affiliation(s)
- Cole Zmurchok
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Jared Collette
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - William R Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee; Department of Mathematics, Vanderbilt University, Nashville, Tennessee; Quantitative Systems Biology Center, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
5
|
Zmurchok C, Holmes WR. Simple Rho GTPase Dynamics Generate a Complex Regulatory Landscape Associated with Cell Shape. Biophys J 2020; 118:1438-1454. [PMID: 32084329 DOI: 10.1016/j.bpj.2020.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023] Open
Abstract
Migratory cells exhibit a variety of morphologically distinct responses to their environments that manifest in their cell shape. Some protrude uniformly to increase substrate contacts, others are broadly contractile, some polarize to facilitate migration, and yet others exhibit mixtures of these responses. Prior studies have identified a discrete collection of shapes that the majority of cells display and demonstrated that activity levels of the cytoskeletal regulators Rac1 and RhoA GTPase regulate those shapes. Here, we use computational modeling to assess whether known GTPase dynamics can give rise to a sufficient diversity of spatial signaling states to explain the observed shapes. Results show that the combination of autoactivation and mutually antagonistic cross talk between GTPases, along with the conservative membrane binding, generates a wide array of distinct homogeneous and polarized regulatory phenotypes that arise for fixed model parameters. From a theoretical perspective, these results demonstrate that simple GTPase dynamics can generate complex multistability in which six distinct stable steady states (three homogeneous and three polarized) coexist for a fixed set of parameters, each of which naturally maps to an observed morphology. From a biological perspective, although we do not explicitly model the cytoskeleton or resulting cell morphologies, these results, along with prior literature linking GTPase activity to cell morphology, support the hypothesis that GTPase signaling dynamics can generate the broad morphological characteristics observed in many migratory cell populations. Further, the observed diversity may be the result of cells populating a complex morphological landscape generated by GTPase regulation rather than being the result of intrinsic cell-cell variation. These results demonstrate that Rho GTPases may have a central role in regulating the broad characteristics of cell shape (e.g., expansive, contractile, polarized, etc.) and that shape heterogeneity may be (at least partly) a reflection of the rich signaling dynamics regulating the cytoskeleton rather than intrinsic cell heterogeneity.
Collapse
Affiliation(s)
- Cole Zmurchok
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - William R Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee; Department of Mathematics, Vanderbilt University, Nashville, Tennessee; Quantitative Systems Biology Center, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
6
|
Holmes WR. Subdiffusive Dynamics Lead to Depleted Particle Densities near Cellular Borders. Biophys J 2019; 116:1538-1546. [PMID: 30954212 DOI: 10.1016/j.bpj.2019.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 01/17/2023] Open
Abstract
It has long been known that the complex cellular environment leads to anomalous motion of intracellular particles. At a gross level, this is characterized by mean-squared displacements that deviate from the standard linear profile. Statistical analysis of particle trajectories has helped further elucidate how different characteristics of the cellular environment can introduce different types of anomalousness. A significant majority of this literature has, however, focused on characterizing the properties of trajectories that do not interact with cell borders (e.g., cell membrane or nucleus). Numerous biological processes ranging from protein activation to exocytosis, however, require particles to be near a membrane. This study investigates the consequences of a canonical type of subdiffusive motion, fractional Brownian motion, and its physical analog, generalized Langevin equation dynamics, on the spatial localization of particles near reflecting boundaries. Results show that this type of subdiffusive motion leads to the formation of significant zones of depleted particle density near boundaries and that this effect is independent of the specific model details encoding those dynamics. Rather, these depletion layers are a natural and robust consequence of the anticorrelated nature of motion increments that is at the core of fractional Brownian motion (or alternatively generalized Langevin equation) dynamics. If such depletion zones are present, it would be of profound importance given the wide array of signaling and transport processes that occur near membranes. If not, that would suggest our understanding of this type of anomalous motion may be flawed. Either way, this result points to the need to further investigate the consequences of anomalous particle motions near cell borders from both theoretical and experimental perspectives.
Collapse
Affiliation(s)
- William R Holmes
- Department of Pysics and Astronomy, Vanderbilt University, Nashville, Tennessee; Department of Mathematics, Vanderbilt University, Nashville, Tennessee; Quantitative Systems Biology Center, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
7
|
Yi ZY, Liang QX, Meng TG, Li J, Dong MZ, Hou Y, Ouyang YC, Zhang CH, Schatten H, Sun QY, Qiao J, Qian WP. PKCβ1 regulates meiotic cell cycle in mouse oocyte. Cell Cycle 2019; 18:395-412. [PMID: 30730241 DOI: 10.1080/15384101.2018.1564492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PKCβI, a member of the classical protein kinase C family, plays key roles in regulating cell cycle transition. Here, we report the expression, localization and functions of PKCβI in mouse oocyte meiotic maturation. PKCβI and p-PKCβI (phosphor-PKCβI) were expressed from germinal vesicle (GV) stage to metaphase II (MII) stage. Confocal microscopy revealed that PKCβI was localized in the GV and evenly distributed in the cytoplasm after GV breakdown (GVBD), and it was concentrated at the midbody at telophase in meiotic oocytes. While, p-PKCβI was concentrated at the spindle poles at the metaphase stages and associated with midbody at telophase. Depletion of PKCβI by specific siRNA injection resulted in defective spindles, accompanied with spindle assembly checkpoint activation, metaphase I arrest and failure of first polar body (PB1) extrusion. Live cell imaging analysis also revealed that knockdown of PKCβI resulted in abnormal spindles, misaligned chromosomes, and meiotic arrest of oocytes arrest at the Pro-MI/MI stage. PKCβI depletion did not affect the G2/M transition, but its overexpression delayed the G2/M transition through regulating Cyclin B1 level and Cdc2 activity. Our findings reveal that PKCβI is a critical regulator of meiotic cell cycle progression in oocytes. Abbreviations: PKC, protein kinase C; COC, cumulus-oocyte complexes; GV, germinal vesicle; GVBD, germinal vesicle breakdown; Pro-MI, first pro-metaphase; MI, first metaphase; Tel I, telophase I; MII, second metaphase; PB1, first polar body; SAC, spindle assembly checkpoint.
Collapse
Affiliation(s)
- Zi-Yun Yi
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Qiu-Xia Liang
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Tie-Gang Meng
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Jian Li
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Ming-Zhe Dong
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Yi Hou
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Ying-Chun Ouyang
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Chun-Hui Zhang
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Heide Schatten
- c Department of Veterinary Pathobiology , University of Missouri-Columbia , Columbia , MO , USA
| | - Qing-Yuan Sun
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Jie Qiao
- d Reproductive Medical Center , Peking University Third Hospital , Beijing , China
| | - Wei-Ping Qian
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| |
Collapse
|
8
|
Dekraker C, Boucher E, Mandato CA. Regulation and Assembly of Actomyosin Contractile Rings in Cytokinesis and Cell Repair. Anat Rec (Hoboken) 2018; 301:2051-2066. [PMID: 30312008 DOI: 10.1002/ar.23962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023]
Abstract
Cytokinesis and single-cell wound repair both involve contractile assemblies of filamentous actin (F-actin) and myosin II organized into characteristic ring-like arrays. The assembly of these actomyosin contractile rings (CRs) is specified spatially and temporally by small Rho GTPases, which trigger local actin polymerization and myosin II contractility via a variety of downstream effectors. We now have a much clearer view of the Rho GTPase signaling cascade that leads to the formation of CRs, but some factors involved in CR positioning, assembly, and function remain poorly understood. Recent studies show that this regulation is multifactorial and goes beyond the long-established Ca2+ -dependent processes. There is substantial evidence that the Ca2+ -independent changes in cell shape, tension, and plasma membrane composition that characterize cytokinesis and single-cell wound repair also regulate CR formation. Elucidating the regulation and mechanistic properties of CRs is important to our understanding of basic cell biology and holds potential for therapeutic applications in human disease. In this review, we present a primer on the factors influencing and regulating CR positioning, assembly, and contraction as they occur in a variety of cytokinetic and single-cell wound repair models. Anat Rec, 301:2051-2066, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Corina Dekraker
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Horn A, Jaiswal JK. Cellular mechanisms and signals that coordinate plasma membrane repair. Cell Mol Life Sci 2018; 75:3751-3770. [PMID: 30051163 PMCID: PMC6541445 DOI: 10.1007/s00018-018-2888-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023]
Abstract
Plasma membrane forms the barrier between the cytoplasm and the environment. Cells constantly and selectively transport molecules across their plasma membrane without disrupting it. Any disruption in the plasma membrane compromises its selective permeability and is lethal, if not rapidly repaired. There is a growing understanding of the organelles, proteins, lipids, and small molecules that help cells signal and efficiently coordinate plasma membrane repair. This review aims to summarize how these subcellular responses are coordinated and how cellular signals generated due to plasma membrane injury interact with each other to spatially and temporally coordinate repair. With the involvement of calcium and redox signaling in single cell and tissue repair, we will discuss how these and other related signals extend from single cell repair to tissue level repair. These signals link repair processes that are activated immediately after plasma membrane injury with longer term processes regulating repair and regeneration of the damaged tissue. We propose that investigating cell and tissue repair as part of a continuum of wound repair mechanisms would be of value in treating degenerative diseases.
Collapse
Affiliation(s)
- Adam Horn
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA.
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
10
|
Holmes WR, Golding AE, Bement WM, Edelstein-Keshet L. A mathematical model of GTPase pattern formation during single-cell wound repair. Interface Focus 2016; 6:20160032. [PMID: 27708759 PMCID: PMC4992738 DOI: 10.1098/rsfs.2016.0032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rho GTPases are regulatory proteins whose patterns on the surface of a cell affect cell polarization, cell motility and repair of single-cell wounds. The stereotypical patterns formed by two such proteins, Rho and Cdc42, around laser-injured frog oocytes permit experimental analysis of GTPase activation, inactivation, segregation and crosstalk. Here, we review the development and analysis of a spatial model of GTPase dynamics that describe the formation of concentric zones of Rho and Cdc42 activity around wounds, and describe how this model has provided insights into the roles of the GTPase effector molecules protein kinase C (PKCβ and PKCη) and guanosine nucleotide dissociation inhibitor (GDI) in the wound response. We further demonstrate how the use of a 'sharp switch' model approximation in combination with bifurcation analysis can aid mapping the model behaviour in parameter space (approximate results confirmed with numerical simulation methods). Using these methods in combination with experimental manipulation of PKC activity (PKC overexpression (OE) and dominant negative conditions), we have shown that: (i) PKCβ most probably acts by enhancing existing positive feedbacks (from Rho to itself via the guanosine nucleotide exchange factor domain of Abr, and from Cdc42 to itself), (ii) PKCη most probably increases basal rates of inactivation (or possibly decreases basal rates of activation) of Rho and Cdc42, and (iii) the graded distribution of PKCη and its effect on initial Rho activity accounts for inversion of zones in a fraction (20%) of PKCη OE cells. Finally, we speculate that GDIs (which sequester GTPases) may have a critical role in defining the spatial domain, where the wound response may occur. This paper provides a more thorough exposition of the methods of analysis used in the investigation, whereas previous work on this topic was addressed to biologists and abbreviated such discussion.
Collapse
Affiliation(s)
- William R. Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
| | - Adriana E. Golding
- Cellular and Molecular Biology Program, Laboratory of Cell and Molecular Biology, Department of Zoology, University of Wisconsin, Madison, WI, USA
| | - William M. Bement
- Cellular and Molecular Biology Program, Laboratory of Cell and Molecular Biology, Department of Zoology, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
11
|
Paradoxical signaling regulates structural plasticity in dendritic spines. Proc Natl Acad Sci U S A 2016; 113:E5298-307. [PMID: 27551076 DOI: 10.1073/pnas.1610391113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transient spine enlargement (3- to 5-min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks, and their role is to control both the activation and the inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion, including calmodulin-dependent protein kinase II (CaMKII), RhoA, and Cdc42, and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics.
Collapse
|
12
|
Holmes WR, Edelstein-Keshet L. Analysis of a minimal Rho-GTPase circuit regulating cell shape. Phys Biol 2016; 13:046001. [DOI: 10.1088/1478-3975/13/4/046001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|