1
|
Carvalho JE, Burtin M, Detournay O, Amiel AR, Röttinger E. Optimized husbandry and targeted gene-editing for the cnidarian Nematostella vectensis. Development 2025; 152:dev204387. [PMID: 39776154 DOI: 10.1242/dev.204387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Optimized laboratory conditions for research models are crucial for the success of scientific projects. This includes controlling the entire life cycle, having access to all developmental stages and maintaining stable physiological conditions. Reducing the life cycle of a research model can also enhance the access to biological material and speed up genetic tool development. Thus, we optimized the rearing conditions for the sea anemone Nematostella vectensis, a cnidarian research model, to study embryonic and post-metamorphic processes, such as regeneration. We adopted a semi-automated aquaculture system for N. vectensis and developed a dietary protocol optimized for the different life stages. Thereby, we increased spawning efficiencies, juvenile growth and survival rates, and considerably reduced the overall life cycle down to 2 months. To further improve the obtention of CRISPR-Cas9 mutants, we optimized the design of sgRNAs leading to full knockout animals in F0 polyps using a single sgRNA. Finally, we show that NHEJ-mediated transgene insertion is possible in N. vectensis. In summary, our study provides additional resources for the scientific community that uses or plans to use N. vectensis as a research model.
Collapse
Affiliation(s)
- João E Carvalho
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107France
- Université Côte d'Azur, Federative Research Institute - Marine Resources (IFR MARRES), 28 Avenue de Valrose, Nice, 06103France
| | - Maxence Burtin
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107France
- Université Côte d'Azur, Federative Research Institute - Marine Resources (IFR MARRES), 28 Avenue de Valrose, Nice, 06103France
| | | | - Aldine R Amiel
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107France
- Université Côte d'Azur, Federative Research Institute - Marine Resources (IFR MARRES), 28 Avenue de Valrose, Nice, 06103France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, 06107France
- Université Côte d'Azur, Federative Research Institute - Marine Resources (IFR MARRES), 28 Avenue de Valrose, Nice, 06103France
| |
Collapse
|
2
|
Lechable M, Jan A, Duchene A, Uveira J, Weissbourd B, Gissat L, Collet S, Gilletta L, Chevalier S, Leclère L, Peron S, Barreau C, Lasbleiz R, Houliston E, Momose T. An improved whole life cycle culture protocol for the hydrozoan genetic model Clytia hemisphaerica. Biol Open 2020; 9:bio051268. [PMID: 32994186 PMCID: PMC7657476 DOI: 10.1242/bio.051268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
The jellyfish species Clytia hemisphaerica (Cnidaria, Hydrozoa) has emerged as a new experimental model animal in the last decade. Favorable characteristics include a fully transparent body suitable for microscopy, daily gamete production and a relatively short life cycle. Furthermore, whole genome sequence assembly and efficient gene editing techniques using CRISPR/Cas9 have opened new possibilities for genetic studies. The quasi-immortal vegetatively-growing polyp colony stage provides a practical means to maintain mutant strains. In the context of developing Clytia as a genetic model, we report here an improved whole life cycle culture method including an aquarium tank system designed for culture of the tiny jellyfish form. We have compared different feeding regimes using Artemia larvae as food and demonstrate that the stage-dependent feeding control is the key for rapid and reliable medusa and polyp rearing. Metamorphosis of the planula larvae into a polyp colony can be induced efficiently using a new synthetic peptide. The optimized procedures detailed here make it practical to generate genetically modified Clytia strains and to maintain their whole life cycle in the laboratory.This article has an associated First Person interview with the two first authors of the paper.
Collapse
Affiliation(s)
- Marion Lechable
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Alexandre Jan
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Axel Duchene
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Julie Uveira
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Brandon Weissbourd
- California Institute of Technology, Division of Biology and Biological Engineering, and the Howard Hughes Medical Institute, 1200 E California Blvd, Pasadena CA 91125, USA
| | - Loann Gissat
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Sophie Collet
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Laurent Gilletta
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Sandra Chevalier
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Lucas Leclère
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Sophie Peron
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Carine Barreau
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Régis Lasbleiz
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Evelyn Houliston
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Tsuyoshi Momose
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| |
Collapse
|
3
|
Gene knockdown via electroporation of short hairpin RNAs in embryos of the marine hydroid Hydractinia symbiolongicarpus. Sci Rep 2020; 10:12806. [PMID: 32732955 PMCID: PMC7393174 DOI: 10.1038/s41598-020-69489-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022] Open
Abstract
Analyzing gene function in a broad range of research organisms is crucial for understanding the biological functions of genes and their evolution. Recent studies have shown that short hairpin RNAs (shRNAs) can induce gene-specific knockdowns in two cnidarian species. We have developed a detailed, straightforward, and scalable method to deliver shRNAs into fertilized eggs of the hydrozoan cnidarian Hydractinia symbiolongicarpus via electroporation, yielding effective gene-targeted knockdowns that can last throughout embryogenesis. Our electroporation protocol allows for the transfection of shRNAs into hundreds of fertilized H. symbiolongicarpus eggs simultaneously with minimal embryo death and no long-term harmful consequences on the developing animals. We show RT-qPCR and detailed phenotypic evidence of our method successfully inducing effective knockdowns of an exogenous gene (eGFP) and an endogenous gene (Nanos2), as well as knockdown confirmation by RT-qPCR of two other endogenous genes. We also provide visual confirmation of successful shRNA transfection inside embryos through electroporation. Our detailed protocol for electroporation of shRNAs in H. symbiolongicarpus embryos constitutes an important experimental resource for the hydrozoan community while also serving as a successful model for the development of similar methods for interrogating gene function in other marine invertebrates.
Collapse
|
4
|
Pende M, Vadiwala K, Schmidbaur H, Stockinger AW, Murawala P, Saghafi S, Dekens MPS, Becker K, Revilla-i-Domingo R, Papadopoulos SC, Zurl M, Pasierbek P, Simakov O, Tanaka EM, Raible F, Dodt HU. A versatile depigmentation, clearing, and labeling method for exploring nervous system diversity. SCIENCE ADVANCES 2020; 6:eaba0365. [PMID: 32523996 PMCID: PMC7259959 DOI: 10.1126/sciadv.aba0365] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Tissue clearing combined with deep imaging has emerged as a powerful alternative to classical histological techniques. Whereas current techniques have been optimized for imaging selected nonpigmented organs such as the mammalian brain, natural pigmentation remains challenging for most other biological specimens of larger volume. We have developed a fast DEpigmEntation-Plus-Clearing method (DEEP-Clear) that is easily incorporated in existing workflows and combines whole system labeling with a spectrum of detection techniques, ranging from immunohistochemistry to RNA in situ hybridization, labeling of proliferative cells (EdU labeling) and visualization of transgenic markers. With light-sheet imaging of whole animals and detailed confocal studies on pigmented organs, we provide unprecedented insight into eyes, whole nervous systems, and subcellular structures in animal models ranging from worms and squids to axolotls and zebrafish. DEEP-Clear thus paves the way for the exploration of species-rich clades and developmental stages that are largely inaccessible by regular imaging approaches.
Collapse
Affiliation(s)
- Marko Pende
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, building CH, 1040 Vienna, Austria
- Section for Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Karim Vadiwala
- Max Perutz Labs and Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Hannah Schmidbaur
- Department of Neuroscience and Development, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Alexander W. Stockinger
- Max Perutz Labs and Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Prayag Murawala
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Saiedeh Saghafi
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, building CH, 1040 Vienna, Austria
| | - Marcus P. S. Dekens
- Max Perutz Labs and Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Klaus Becker
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, building CH, 1040 Vienna, Austria
- Section for Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Roger Revilla-i-Domingo
- Max Perutz Labs and Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Sofia-Christina Papadopoulos
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, building CH, 1040 Vienna, Austria
| | - Martin Zurl
- Max Perutz Labs and Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Pawel Pasierbek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Oleg Simakov
- Department of Neuroscience and Development, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Elly M. Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Florian Raible
- Max Perutz Labs and Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Hans-Ulrich Dodt
- Department for Bioelectronics, FKE, Vienna University of Technology, Gußhausstraße 25-25A, building CH, 1040 Vienna, Austria
- Section for Bioelectronics, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
5
|
Abstract
Cells are arranged into species-specific patterns during early embryogenesis. Such cell division patterns are important since they often reflect the distribution of localized cortical factors from eggs/fertilized eggs to specific cells as well as the emergence of organismal form. However, it has proven difficult to reveal the mechanisms that underlie the emergence of cell positioning patterns that underlie embryonic shape, likely because a systems-level approach is required that integrates cell biological, genetic, developmental, and mechanical parameters. The choice of organism to address such questions is also important. Because ascidians display the most extreme form of invariant cleavage pattern among the metazoans, we have been analyzing the cell biological mechanisms that underpin three aspects of cell division (unequal cell division (UCD), oriented cell division (OCD), and asynchronous cell cycles) which affect the overall shape of the blastula-stage ascidian embryo composed of 64 cells. In ascidians, UCD creates two small cells at the 16-cell stage that in turn undergo two further successive rounds of UCD. Starting at the 16-cell stage, the cell cycle becomes asynchronous, whereby the vegetal half divides before the animal half, thus creating 24-, 32-, 44-, and then 64-cell stages. Perturbing either UCD or the alternate cell division rhythm perturbs cell position. We propose that dynamic cell shape changes propagate throughout the embryo via cell-cell contacts to create the ascidian-specific invariant cleavage pattern.
Collapse
|
6
|
Microinjection to deliver protein, mRNA, and DNA into zygotes of the cnidarian endosymbiosis model Aiptasia sp. Sci Rep 2018; 8:16437. [PMID: 30401930 PMCID: PMC6219564 DOI: 10.1038/s41598-018-34773-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/26/2018] [Indexed: 01/19/2023] Open
Abstract
Reef-building corals depend on an intracellular symbiosis with photosynthetic dinoflagellates for their survival in nutrient-poor oceans. Symbionts are phagocytosed by coral larvae from the environment and transfer essential nutrients to their hosts. Aiptasia, a small tropical marine sea anemone, is emerging as a tractable model system for coral symbiosis; however, to date functional tools and genetic transformation are lacking. Here we have established an efficient workflow to collect Aiptasia eggs for in vitro fertilization and microinjection as the basis for experimental manipulations in the developing embryo and larvae. We demonstrate that protein, mRNA, and DNA can successfully be injected into live Aiptasia zygotes to label actin with recombinant Lifeact-eGFP protein; to label nuclei and cell membranes with NLS-eGFP and farnesylated mCherry translated from injected mRNA; and to transiently drive transgene expression from an Aiptasia-specific promoter, respectively, in embryos and larvae. These proof-of-concept approaches pave the way for future functional studies of development and symbiosis establishment in Aiptasia, a powerful model to unravel the molecular mechanisms underlying intracellular coral-algal symbiosis.
Collapse
|
7
|
Chassé H, Boulben S, Costache V, Cormier P, Morales J. Analysis of translation using polysome profiling. Nucleic Acids Res 2017; 45:e15. [PMID: 28180329 PMCID: PMC5388431 DOI: 10.1093/nar/gkw907] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/07/2016] [Accepted: 09/30/2016] [Indexed: 02/05/2023] Open
Abstract
During the past decade, there has been growing interest in the role of translational regulation of gene expression in many organisms. Polysome profiling has been developed to infer the translational status of a specific mRNA species or to analyze the translatome, i.e. the subset of mRNAs actively translated in a cell. Polysome profiling is especially suitable for emergent model organisms for which genomic data are limited. In this paper, we describe an optimized protocol for the purification of sea urchin polysomes and highlight the critical steps involved in polysome purification. We applied this protocol to obtain experimental results on translational regulation of mRNAs following fertilization. Our protocol should prove useful for integrating the study of the role of translational regulation in gene regulatory networks in any biological model. In addition, we demonstrate how to carry out high-throughput processing of polysome gradient fractions, for the simultaneous screening of multiple biological conditions and large-scale preparation of samples for next-generation sequencing.
Collapse
Affiliation(s)
- Héloïse Chassé
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Sandrine Boulben
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Vlad Costache
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Patrick Cormier
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Julia Morales
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| |
Collapse
|
8
|
Tschopp P, Tabin CJ. Deep homology in the age of next-generation sequencing. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150475. [PMID: 27994118 PMCID: PMC5182409 DOI: 10.1098/rstb.2015.0475] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/14/2022] Open
Abstract
The principle of homology is central to conceptualizing the comparative aspects of morphological evolution. The distinctions between homologous or non-homologous structures have become blurred, however, as modern evolutionary developmental biology (evo-devo) has shown that novel features often result from modification of pre-existing developmental modules, rather than arising completely de novo. With this realization in mind, the term 'deep homology' was coined, in recognition of the remarkably conserved gene expression during the development of certain animal structures that would not be considered homologous by previous strict definitions. At its core, it can help to formulate an understanding of deeper layers of ontogenetic conservation for anatomical features that lack any clear phylogenetic continuity. Here, we review deep homology and related concepts in the context of a gene expression-based homology discussion. We then focus on how these conceptual frameworks have profited from the recent rise of high-throughput next-generation sequencing. These techniques have greatly expanded the range of organisms amenable to such studies. Moreover, they helped to elevate the traditional gene-by-gene comparison to a transcriptome-wide level. We will end with an outlook on the next challenges in the field and how technological advances might provide exciting new strategies to tackle these questions.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Patrick Tschopp
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|