1
|
Muniz L, Lazorthes S, Delmas M, Ouvrard J, Aguirrebengoa M, Trouche D, Nicolas E. Circular ANRIL isoforms switch from repressors to activators of p15/CDKN2B expression during RAF1 oncogene-induced senescence. RNA Biol 2020; 18:404-420. [PMID: 32862732 PMCID: PMC7951966 DOI: 10.1080/15476286.2020.1812910] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Long non-coding RNAs (ncRNAs) are major regulators of gene expression and cell fate. The INK4 locus encodes the tumour suppressor proteins p15INK4b, p16INK4a and p14ARF required for cell cycle arrest and whose expression increases during senescence. ANRIL is a ncRNA antisense to the p15 gene. In proliferative cells, ANRIL prevents senescence by repressing INK4 genes through the recruitment of Polycomb-group proteins. In models of replicative and RASval12 oncogene-induced senescence (OIS), the expression of ANRIL and Polycomb proteins decreases, thus allowing INK4 derepression. Here, we found in a model of RAF1 OIS that ANRIL expression rather increases, due in particular to an increased stability. This led us to search for circular ANRIL isoforms, as circular RNAs are rather stable species. We found that the expression of two circular ANRIL increases in several OIS models (RAF1, MEK1 and BRAF). In proliferative cells, they repress p15 expression, while in RAF1 OIS, they promote full induction of p15, p16 and p14ARF expression. Further analysis of one of these circular ANRIL shows that it interacts with Polycomb proteins and decreases EZH2 Polycomb protein localization and H3K27me3 at the p15 and p16 promoters, respectively. We propose that changes in the ratio between Polycomb proteins and circular ANRIL isoforms allow these isoforms to switch from repressors of p15 gene to activators of all INK4 genes in RAF1 OIS. Our data reveal that regulation of ANRIL expression depends on the senescence inducer and underline the importance of circular ANRIL in the regulation of INK4 gene expression and senescence.
Collapse
Affiliation(s)
- Lisa Muniz
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sandra Lazorthes
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Maxime Delmas
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Ouvrard
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marion Aguirrebengoa
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Didier Trouche
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Estelle Nicolas
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
2
|
Anerillas C, Abdelmohsen K, Gorospe M. Regulation of senescence traits by MAPKs. GeroScience 2020; 42:397-408. [PMID: 32300964 PMCID: PMC7205942 DOI: 10.1007/s11357-020-00183-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023] Open
Abstract
A phenotype of indefinite growth arrest acquired in response to sublethal damage, cellular senescence affects normal aging and age-related disease. Mitogen-activated protein kinases (MAPKs) are capable of sensing changes in cellular conditions, and in turn elicit adaptive responses including cell senescence. MAPKs modulate the levels and function of many proteins, including proinflammatory factors and factors in the p21/p53 and p16/RB pathways, the main senescence-regulatory axes. Through these actions, MAPKs implement key traits of senescence-growth arrest, cell survival, and the senescence-associated secretory phenotype (SASP). In this review, we summarize and discuss our current knowledge of the impact of MAPKs in senescence. In addition, given that eliminating or suppressing senescent cells can improve health span, we discuss the function and possible exploitation of MAPKs in the elimination (senolysis) or suppression (senostasis) of senescent cells.
Collapse
Affiliation(s)
- Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Jiao Y, Feng Y, Wang X. Regulation of Tumor Suppressor Gene CDKN2A and Encoded p16-INK4a Protein by Covalent Modifications. BIOCHEMISTRY (MOSCOW) 2018; 83:1289-1298. [PMID: 30482142 DOI: 10.1134/s0006297918110019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CDKN2A is one of the most studied tumor suppressor genes. It encodes the p16-INK4a protein that plays a critical role in the cell cycle progression, differentiation, senescence, and apoptosis. Mutations in CDKN2A or dysregulation of its functional activity are frequently associated with various types of human cancer. As a cyclin-dependent kinase inhibitor, p16-INK4a forms a complex with cyclin-dependent kinases 4/6 (CDK4/6) thereby competing with cyclin D. It is believed that the helix-turn-helix structures in the content of tandem ankyrin repeats in p16-INK4a are required for the protein interaction with CDK4. Until recently, the mechanisms considered to be involved in the regulation of p16-INK4a functions and cancer development have been mutations in DNA, homozygous or heterozygous gene loss, and methylation of CDKN2A promoter region. In this review, we discuss recent findings on the regulation of p16-INK4a by covalent modifications at both transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Yang Jiao
- School of Physical Education, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xiuli Wang
- Central Laboratory of General Biology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, P. R. China.
| |
Collapse
|
4
|
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol 2018; 28:436-453. [PMID: 29477613 DOI: 10.1016/j.tcb.2018.02.001] [Citation(s) in RCA: 1626] [Impact Index Per Article: 232.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a permanent state of cell cycle arrest that promotes tissue remodeling during development and after injury, but can also contribute to the decline of the regenerative potential and function of tissues, to inflammation, and to tumorigenesis in aged organisms. Therefore, the identification, characterization, and pharmacological elimination of senescent cells have gained attention in the field of aging research. However, the nonspecificity of current senescence markers and the existence of different senescence programs strongly limit these tasks. Here, we describe the molecular regulators of senescence phenotypes and how they are used for identifying senescent cells in vitro and in vivo. We also highlight the importance that these levels of regulations have in the development of therapeutic targets.
Collapse
Affiliation(s)
- Alejandra Hernandez-Segura
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|