1
|
Powers RM, Daza R, Koehler AE, Courchet J, Calabrese B, Hevner RF, Halpain S. Growth cone macropinocytosis of neurotrophin receptor and neuritogenesis are regulated by neuron navigator 1. Mol Biol Cell 2022; 33:ar64. [PMID: 35352947 PMCID: PMC9561856 DOI: 10.1091/mbc.e21-12-0623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuron navigator 1 (Nav1) is a cytoskeleton-associated protein expressed during brain development that is necessary for proper neuritogenesis, but the underlying mechanisms are poorly understood. Here we show that Nav1 is present in elongating axon tracts during mouse brain embryogenesis. We found that depletion of Nav1 in cultured neurons disrupts growth cone morphology and neurotrophin-stimulated neuritogenesis. In addition to regulating both F-actin and microtubule properties, Nav1 promotes actin-rich membrane ruffles in the growth cone and promotes macropinocytosis at those membrane ruffles, including internalization of the TrkB receptor for the neurotrophin brain-derived neurotropic factor (BDNF). Growth cone macropinocytosis is important for downstream signaling, neurite targeting, and membrane recycling, implicating Nav1 in one or more of these processes. Depletion of Nav1 also induces transient membrane blebbing via disruption of signaling in the Rho GTPase signaling pathway, supporting the novel role of Nav1 in dynamic actin-based membrane regulation at the cell periphery. These data demonstrate that Nav1 works at the interface of microtubules, actin, and plasma membrane to organize the cell periphery and promote uptake of growth and guidance cues to facilitate neural morphogenesis during development.
Collapse
Affiliation(s)
- Regina M. Powers
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Ray Daza
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037,Department of Pathology, University of California, San Diego, La Jolla, CA 92161
| | - Alanna E. Koehler
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037,Department of Pathology, University of California, San Diego, La Jolla, CA 92161
| | - Julien Courchet
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 69008 Lyon Cedex, France
| | - Barbara Calabrese
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Robert F. Hevner
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037,Department of Pathology, University of California, San Diego, La Jolla, CA 92161
| | - Shelley Halpain
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037,*Address correspondence to: Shelley Halpain ()
| |
Collapse
|
2
|
Papalazarou V, Swaminathan K, Jaber-Hijazi F, Spence H, Lahmann I, Nixon C, Salmeron-Sanchez M, Arnold HH, Rottner K, Machesky LM. The Arp2/3 complex is crucial for colonisation of the mouse skin by melanoblasts. Development 2020; 147:dev194555. [PMID: 33028610 PMCID: PMC7687863 DOI: 10.1242/dev.194555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023]
Abstract
The Arp2/3 complex is essential for the assembly of branched filamentous actin, but its role in physiology and development is surprisingly little understood. Melanoblasts deriving from the neural crest migrate along the developing embryo and traverse the dermis to reach the epidermis, colonising the skin and eventually homing within the hair follicles. We have previously established that Rac1 and Cdc42 direct melanoblast migration in vivo We hypothesised that the Arp2/3 complex might be the main downstream effector of these small GTPases. Arp3 depletion in the melanocyte lineage results in severe pigmentation defects in dorsal and ventral regions of the mouse skin. Arp3 null melanoblasts demonstrate proliferation and migration defects and fail to elongate as their wild-type counterparts. Conditional deletion of Arp3 in primary melanocytes causes improper proliferation, spreading, migration and adhesion to extracellular matrix. Collectively, our results suggest that the Arp2/3 complex is absolutely indispensable in the melanocyte lineage in mouse development, and indicate a significant role in developmental processes that require tight regulation of actin-mediated motility.
Collapse
Affiliation(s)
- Vassilis Papalazarou
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow G61 1QH, UK
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - Karthic Swaminathan
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Farah Jaber-Hijazi
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Heather Spence
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Ines Lahmann
- Cell and Molecular Biology, Institute of Biochemistry and Biotechnology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Colin Nixon
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | - Hans-Henning Arnold
- Cell and Molecular Biology, Institute of Biochemistry and Biotechnology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Laura M Machesky
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| |
Collapse
|
3
|
Ghate K, Mutalik SP, Sthanam LK, Sen S, Ghose A. Fmn2 Regulates Growth Cone Motility by Mediating a Molecular Clutch to Generate Traction Forces. Neuroscience 2020; 448:160-171. [PMID: 33002558 DOI: 10.1016/j.neuroscience.2020.09.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 01/06/2023]
Abstract
Growth cone-mediated axonal outgrowth and accurate synaptic targeting are central to brain morphogenesis. Translocation of the growth cone necessitates mechanochemical regulation of cell-extracellular matrix interactions and the generation of propulsive traction forces onto the growth environment. However, the molecular mechanisms subserving force generation by growth cones remain poorly characterized. The formin family member, Fmn2, has been identified earlier as a regulator of growth cone motility. Here, we explore the mechanisms underlying Fmn2 function in the growth cone. Evaluation of multiple components of the adhesion complexes suggests that Fmn2 regulates point contact stability. Analysis of F-actin retrograde flow reveals that Fmn2 functions as a clutch molecule and mediates the coupling of the actin cytoskeleton to the growth substrate, via point contact adhesion complexes. Using traction force microscopy, we show that the Fmn2-mediated clutch function is necessary for the generation of traction stresses by neurons. Our findings suggest that Fmn2, a protein associated with neurodevelopmental and neurodegenerative disorders, is a key regulator of a molecular clutch activity and consequently motility of neuronal growth cones.
Collapse
Affiliation(s)
- Ketakee Ghate
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sampada P Mutalik
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Lakshmi Kavitha Sthanam
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Mumbai 400076, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Mumbai 400076, India
| | - Aurnab Ghose
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India.
| |
Collapse
|
4
|
Abstract
The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion-motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.
Collapse
Affiliation(s)
- Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
5
|
Miller KE, Suter DM. An Integrated Cytoskeletal Model of Neurite Outgrowth. Front Cell Neurosci 2018; 12:447. [PMID: 30534055 PMCID: PMC6275320 DOI: 10.3389/fncel.2018.00447] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022] Open
Abstract
Neurite outgrowth underlies the wiring of the nervous system during development and regeneration. Despite a significant body of research, the underlying cytoskeletal mechanics of growth and guidance are not fully understood, and the relative contributions of individual cytoskeletal processes to neurite growth are controversial. Here, we review the structural organization and biophysical properties of neurons to make a semi-quantitative comparison of the relative contributions of different processes to neurite growth. From this, we develop the idea that neurons are active fluids, which generate strong contractile forces in the growth cone and weaker contractile forces along the axon. As a result of subcellular gradients in forces and material properties, actin flows rapidly rearward in the growth cone periphery, and microtubules flow forward in bulk along the axon. With this framework, an integrated model of neurite outgrowth is proposed that hopefully will guide new approaches to stimulate neuronal growth.
Collapse
Affiliation(s)
- Kyle E Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States.,Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Faust A, Kandakatla A, van der Merwe Y, Ren T, Huleihel L, Hussey G, Naranjo JD, Johnson S, Badylak S, Steketee M. Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching. J Biomater Appl 2017; 31:1277-1295. [PMID: 28447547 DOI: 10.1177/0885328217698062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Central nervous system neurons often degenerate after trauma due to the inflammatory innate immune response to injury, which can lead to neuronal cell death, scarring, and permanently lost neurologic function. Extracellular matrix bioscaffolds, derived by decellularizing healthy tissues, have been widely used in both preclinical and clinical studies to promote positive tissue remodeling, including neurogenesis, in numerous tissues, with extracellular matrix from homologous tissues often inducing more positive responses. Extracellular matrix hydrogels are liquid at room temperature and enable minimally invasive extracellular matrix injections into central nervous system tissues, before gelation at 37℃. However, few studies have analyzed how extracellular matrix hydrogels influence primary central nervous system neuron survival and growth, and whether central nervous system and non-central nervous system extracellular matrix specificity is critical to neuronal responses. Urinary bladder extracellular matrix hydrogels increase both primary hippocampal neuron survival and neurite growth to similar or even greater extents, suggesting extracellular matrix from non-homologous tissue sources, such as urinary bladder matrix-extracellular matrix, may be a more economical and safer alternative to developing central nervous system extracellular matrices for central nervous system applications. Additionally, we show matrix-bound vesicles derived from urinary bladder extracellular matrix are endocytosed by hippocampal neurons and positively regulate primary hippocampal neuron neurite growth. Matrix-bound vesicles carry protein and RNA cargos, including noncoding RNAs and miRNAs that map to the human genome and are known to regulate cellular processes. Thus, urinary bladder matrix-bound vesicles provide natural and transfectable cargoes which offer new experimental tools and therapeutic applications to study and treat central nervous system neuron injury.
Collapse
Affiliation(s)
- Anne Faust
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Apoorva Kandakatla
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Yolandi van der Merwe
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,3 Swanson School of Engineering, Department of Bioengineering University of Pittsburgh, Pittsburgh, PA, USA
| | - Tanchen Ren
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Luai Huleihel
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Hussey
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Diego Naranjo
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott Johnson
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen Badylak
- 2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,4 Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Steketee
- 1 Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,5 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Omotade OF, Pollitt SL, Zheng JQ. Actin-based growth cone motility and guidance. Mol Cell Neurosci 2017; 84:4-10. [PMID: 28268126 DOI: 10.1016/j.mcn.2017.03.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 11/27/2022] Open
Abstract
Nerve growth cones, the dilated tip of developing axons, are equipped with exquisite abilities to sense environmental cues and to move rapidly through complex terrains of developing brain, leading the axons to their specific targets for precise neuronal wiring. The actin cytoskeleton is the major component of the growth cone that powers its directional motility. Past research has provided significant insights into the mechanisms by which growth cones translate extracellular signals into directional migration. In this review, we summarize the actin-based mechanisms underlying directional growth cone motility, examine novel findings, and discuss the outstanding questions concerning the actin-based growth cone behaviors.
Collapse
Affiliation(s)
- Omotola F Omotade
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Stephanie L Pollitt
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|