1
|
Yuan J, Zou R, Peng X, Wang Y, Cheng Z, Ye T, Han L, Xie C. EvSec22, a SNARE Protein, Regulates Hyphal Growth, Stress Tolerance, and Nematicidal Pathogenicity in Esteya vermicola. J Fungi (Basel) 2025; 11:295. [PMID: 40278116 PMCID: PMC12028303 DOI: 10.3390/jof11040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Bursaphelenchus xylophilus, the causative agent of pine wilt disease (PWD), poses a severe global threat to coniferous forests. Esteya vermicola, an endoparasitic nematophagous fungus, exhibits promising biocontrol potential against this pinewood nematode. The vesicular transport system, evolutionarily conserved in eukaryotes, is essential for fungal pathogenicity. Based on our genome sequence of E. vermicola CBS115803, we identified EvSec22, a gene encoding a SNARE protein implicated in vesicular transport process. This study investigates the role of EvSec22 in E. vermicola during nematode infection, utilizing our optimized gene knockout methodology. Infection assays revealed that EvSec22 deletion significantly impaired the pathogenicity of E. vermicola against B. xylophilus. Phenotypic analyses revealed that the ΔEvSec22 mutant exhibited suppressed hyphal growth, reduced conidiation, and abnormal septal spacing. Furthermore, the mutant showed significantly diminished tolerance to osmotic stress (sorbitol) and oxidative stress (hydrogen peroxide). Overall, the EvSec22 gene is associated with the virulence of E. vermicola CBS115803 against B. xylophilus, and its deletion also affects the normal growth of E. vermicola and its tolerance to abiotic stress. This study providing new insights into SNARE protein functions in fungal biocontrol agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chengjian Xie
- The College of Life Science, Chongqing Normal University, Chongqing 401331, China; (J.Y.); (R.Z.); (Z.C.); (L.H.)
| |
Collapse
|
2
|
Linders PT, Horst CVD, Beest MT, van den Bogaart G. Stx5-Mediated ER-Golgi Transport in Mammals and Yeast. Cells 2019; 8:cells8080780. [PMID: 31357511 PMCID: PMC6721632 DOI: 10.3390/cells8080780] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 5 (Stx5) in mammals and its ortholog Sed5p in Saccharomyces cerevisiae mediate anterograde and retrograde endoplasmic reticulum (ER)-Golgi trafficking. Stx5 and Sed5p are structurally highly conserved and are both regulated by interactions with other ER-Golgi SNARE proteins, the Sec1/Munc18-like protein Scfd1/Sly1p and the membrane tethering complexes COG, p115, and GM130. Despite these similarities, yeast Sed5p and mammalian Stx5 are differently recruited to COPII-coated vesicles, and Stx5 interacts with the microtubular cytoskeleton, whereas Sed5p does not. In this review, we argue that these different Stx5 interactions contribute to structural differences in ER-Golgi transport between mammalian and yeast cells. Insight into the function of Stx5 is important given its essential role in the secretory pathway of eukaryotic cells and its involvement in infections and neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Ta Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Chiel van der Horst
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Martin Ter Beest
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
3
|
Gao J, Reggiori F, Ungermann C. A novel in vitro assay reveals SNARE topology and the role of Ykt6 in autophagosome fusion with vacuoles. J Cell Biol 2018; 217:3670-3682. [PMID: 30097515 PMCID: PMC6168247 DOI: 10.1083/jcb.201804039] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/13/2018] [Accepted: 07/06/2018] [Indexed: 11/22/2022] Open
Abstract
Autophagosome fusion with vacuoles requires a conserved fusion machinery, though the topology remained unclear. Two papers in this issue, Bas et al. and Gao et al., uncover Ykt6 as the required autophagosomal SNARE. Autophagy is a catabolic pathway that delivers intracellular material to the mammalian lysosomes or the yeast and plant vacuoles. The final step in this process is the fusion of autophagosomes with vacuoles, which requires SNARE proteins, the homotypic vacuole fusion and protein sorting tethering complex, the RAB7-like Ypt7 GTPase, and its guanine nucleotide exchange factor, Mon1-Ccz1. Where these different components are located and function during fusion, however, remains to be fully understood. Here, we present a novel in vitro assay to monitor fusion of intact and functional autophagosomes with vacuoles. This process requires ATP, physiological temperature, and the entire fusion machinery to tether and fuse autophagosomes with vacuoles. Importantly, we uncover Ykt6 as the autophagosomal SNARE. Our assay and findings thus provide the tools to dissect autophagosome completion and fusion in a test tube.
Collapse
Affiliation(s)
- Jieqiong Gao
- Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Christian Ungermann
- Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany .,Center of Cellular Nanoanalytics Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
4
|
Hastoy B, Clark A, Rorsman P, Lang J. Fusion pore in exocytosis: More than an exit gate? A β-cell perspective. Cell Calcium 2017; 68:45-61. [PMID: 29129207 DOI: 10.1016/j.ceca.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Secretory vesicle exocytosis is a fundamental biological event and the process by which hormones (like insulin) are released into the blood. Considerable progress has been made in understanding this precisely orchestrated sequence of events from secretory vesicle docked at the cell membrane, hemifusion, to the opening of a membrane fusion pore. The exact biophysical and physiological regulation of these events implies a close interaction between membrane proteins and lipids in a confined space and constrained geometry to ensure appropriate delivery of cargo. We consider some of the still open questions such as the nature of the initiation of the fusion pore, the structure and the role of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor (SNARE) transmembrane domains and their influence on the dynamics and regulation of exocytosis. We discuss how the membrane composition and protein-lipid interactions influence the likelihood of the nascent fusion pore forming. We relate these factors to the hypothesis that fusion pore expansion could be affected in type-2 diabetes via changes in disease-related gene transcription and alterations in the circulating lipid profile. Detailed characterisation of the dynamics of the fusion pore in vitro will contribute to understanding the larger issue of insulin secretory defects in diabetes.
Collapse
Affiliation(s)
- Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Metabolic Research, Institute of Neuroscience and Physiology, University of Goteborg, Medicinaregatan 11, S-41309 Göteborg, Sweden
| | - Jochen Lang
- Laboratoire de Chimie et Biologie des Membranes et Nano-objets (CBMN), CNRS UMR 5248, Université de Bordeaux, Allée de Geoffrey St Hilaire, 33600 Pessac, France.
| |
Collapse
|
5
|
Wang T, Li L, Hong W. SNARE proteins in membrane trafficking. Traffic 2017; 18:767-775. [PMID: 28857378 DOI: 10.1111/tra.12524] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022]
Abstract
SNAREs are the core machinery mediating membrane fusion. In this review, we provide an update on the recent progress on SNAREs regulating membrane fusion events, especially the more detailed fusion processes dissected by well-developed biophysical methods and in vitro single molecule analysis approaches. We also briefly summarize the relevant research from Chinese laboratories and highlight the significant contributions on our understanding of SNARE-mediated membrane trafficking from scientists in China.
Collapse
Affiliation(s)
- Tuanlao Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Liangcheng Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Wanjin Hong
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| |
Collapse
|
7
|
Hastoy B, Scotti PA, Milochau A, Fezoua-Boubegtiten Z, Rodas J, Megret R, Desbat B, Laguerre M, Castano S, Perrais D, Rorsman P, Oda R, Lang J. A Central Small Amino Acid in the VAMP2 Transmembrane Domain Regulates the Fusion Pore in Exocytosis. Sci Rep 2017; 7:2835. [PMID: 28588281 PMCID: PMC5460238 DOI: 10.1038/s41598-017-03013-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/27/2017] [Indexed: 11/30/2022] Open
Abstract
Exocytosis depends on cytosolic domains of SNARE proteins but the function of the transmembrane domains (TMDs) in membrane fusion remains controversial. The TMD of the SNARE protein synaptobrevin2/VAMP2 contains two highly conserved small amino acids, G100 and C103, in its central portion. Substituting G100 and/or C103 with the β-branched amino acid valine impairs the structural flexibility of the TMD in terms of α-helix/β-sheet transitions in model membranes (measured by infrared reflection-absorption or evanescent wave spectroscopy) during increase in protein/lipid ratios, a parameter expected to be altered by recruitment of SNAREs at fusion sites. This structural change is accompanied by reduced membrane fluidity (measured by infrared ellipsometry). The G100V/C103V mutation nearly abolishes depolarization-evoked exocytosis (measured by membrane capacitance) and hormone secretion (measured biochemically). Single-vesicle optical (by TIRF microscopy) and biophysical measurements of ATP release indicate that G100V/C103V retards initial fusion-pore opening, hinders its expansion and leads to premature closure in most instances. We conclude that the TMD of VAMP2 plays a critical role in membrane fusion and that the structural mobility provided by the central small amino acids is crucial for exocytosis by influencing the molecular re-arrangements of the lipid membrane that are necessary for fusion pore opening and expansion.
Collapse
Affiliation(s)
- Benoît Hastoy
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Pier A Scotti
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Alexandra Milochau
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Zahia Fezoua-Boubegtiten
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Jorge Rodas
- Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Laboratoire de l'Intégration du Matériau au Système, UMR CNRS 5218, 351 Cours de la Libération, 33400 Talence, France.,Institut Polytechnique de Bordeaux, Avernue des Facultés, 33405, Talence, France
| | - Rémi Megret
- Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Laboratoire de l'Intégration du Matériau au Système, UMR CNRS 5218, 351 Cours de la Libération, 33400 Talence, France.,Institut Polytechnique de Bordeaux, Avernue des Facultés, 33405, Talence, France
| | - Bernard Desbat
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Michel Laguerre
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Sabine Castano
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - David Perrais
- Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Interdisciplinary Institute for Neuroscience, UMR CNRS 5287, 146, rue Léo-Saignat, 33077, Bordeaux, France
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Reiko Oda
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Jochen Lang
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France. .,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.
| |
Collapse
|