1
|
Takeda JI, Okamoto T, Masuda A. Evolutionarily Developed Alternatively Spliced Exons Containing Translation Initiation Sites. Cells 2024; 14:11. [PMID: 39791712 PMCID: PMC11719525 DOI: 10.3390/cells14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Alternative splicing is essential for the generation of various protein isoforms that are involved in cell differentiation and tissue development. In addition to internal coding exons, alternative splicing affects the exons with translation initiation codons; however, little is known about these exons. Here, we performed a systematic classification of human alternative exons using coding information. The analysis showed that more than 5% of cassette exons contain translation initiation codons (alternatively skipped exons harboring a 5' untranslated region and coding region, 5UC-ASEs) although their skipping causes the deletion of translation initiation sites essential for protein synthesis. The splicing of 5UC-ASEs is under the repressive control of MATR3, a DNA/RNA-binding protein associated with neurodegeneration, and is distinctly regulated particularly in the human brain, muscle, and testis. Interestingly, MATR3 represses its own translation by skipping a 5UC-ASE in MATR3 to autoregulate its expression level. 5UC-ASEs are larger than other types of alternative exons. Furthermore, evolutionary analysis revealed that 5UC-ASEs have already appeared in cartilaginous fishes, have increased in amphibians, and are concentrated in the genes involved in transcription in mammals. Taken together, our analysis identified a unique set of alternative exons, 5UC-ASEs, that have evolutionarily acquired a repression mechanism for gene expression through association with MATR3.
Collapse
Affiliation(s)
- Jun-ichi Takeda
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Takaaki Okamoto
- Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan;
- Academia-Industry Collaboration Platform for Cultivating Medical AI Leaders (AI-MAILs), Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Akio Masuda
- Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan;
| |
Collapse
|
2
|
Sprunger ML, Jackrel ME. The role of Matrin-3 in physiology and its dysregulation in disease. Biochem Soc Trans 2024; 52:961-972. [PMID: 38813817 PMCID: PMC11209761 DOI: 10.1042/bst20220585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
The dysfunction of many RNA-binding proteins (RBPs) that are heavily disordered, including TDP-43 and FUS, are implicated in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). These proteins serve many important roles in the cell, and their capacity to form biomolecular condensates (BMCs) is key to their function, but also a vulnerability that can lead to misregulation and disease. Matrin-3 (MATR3) is an intrinsically disordered RBP implicated both genetically and pathologically in ALS/FTD, though it is relatively understudied as compared with TDP-43 and FUS. In addition to binding RNA, MATR3 also binds DNA and is implicated in many cellular processes including the DNA damage response, transcription, splicing, and cell differentiation. It is unclear if MATR3 localizes to BMCs under physiological conditions, which is brought further into question due to its lack of a prion-like domain. Here, we review recent studies regarding MATR3 and its roles in numerous physiological processes, as well as its implication in a range of diseases.
Collapse
Affiliation(s)
- Macy L Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, U.S.A
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, MO 63130, U.S.A
| |
Collapse
|
3
|
Abstract
RNA-binding proteins (RBPs) are essential factors required for the physiological function of neurons, muscle, and other tissue types. In keeping with this, a growing body of genetic, clinical, and pathological evidence indicates that RBP dysfunction and/or gene mutation leads to neurodegeneration and myopathy. Here, we summarize the current understanding of matrin 3 (MATR3), a poorly understood RBP implicated not only in ALS and frontotemporal dementia but also in distal myopathy. We begin by reviewing MATR3's functions, its regulation, and how it may be involved in both sporadic and familial neuromuscular disease. We also discuss insights gleaned from cellular and animal models of MATR3 pathogenesis, the links between MATR3 and other disease-associated RBPs, and the mechanisms underlying RBP-mediated disorders.
Collapse
Affiliation(s)
- Ahmed M. Malik
- Medical Scientist Training Program
- Neuroscience Graduate Program, and
| | - Sami J. Barmada
- Neuroscience Graduate Program, and
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Zhao M, Kao CS, Arndt C, Tran DD, Cho WI, Maksimovic K, Chen XXL, Khan M, Zhu H, Qiao J, Peng K, Hong J, Xu J, Kim D, Kim JR, Lee J, van Bruggen R, Yoon WH, Park J. Knockdown of genes involved in axonal transport enhances the toxicity of human neuromuscular disease-linked MATR3 mutations in Drosophila. FEBS Lett 2020; 594:2800-2818. [PMID: 32515490 DOI: 10.1002/1873-3468.13858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Mutations in the nuclear matrix protein Matrin 3 (MATR3) have been identified in amyotrophic lateral sclerosis and myopathy. To investigate the mechanisms underlying MATR3 mutations in neuromuscular diseases and efficiently screen for modifiers of MATR3 toxicity, we generated transgenic MATR3 flies. Our findings indicate that expression of wild-type or mutant MATR3 in motor neurons reduces climbing ability and lifespan of flies, while their expression in indirect flight muscles (IFM) results in abnormal wing positioning and muscle degeneration. In both motor neurons and IFM, mutant MATR3 expression results in more severe phenotypes than wild-type MATR3, demonstrating that the disease-linked mutations confer pathogenicity. We conducted a targeted candidate screen for modifiers of the MATR3 abnormal wing phenotype and identified multiple enhancers involved in axonal transport. Knockdown of these genes enhanced protein levels and insolubility of mutant MATR3. These results suggest that accumulation of mutant MATR3 contributes to toxicity and implicate axonal transport dysfunction in disease pathogenesis.
Collapse
Affiliation(s)
- Melody Zhao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ching Serena Kao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Claudia Arndt
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - David Duc Tran
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Woo In Cho
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Katarina Maksimovic
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xiao Xiao Lily Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mashiat Khan
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hongxian Zhu
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Julia Qiao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kailong Peng
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jingyao Hong
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jialu Xu
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Deanna Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jihye Rachel Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jooyun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Rebekah van Bruggen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Wan Hee Yoon
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nat Rev Neurol 2020; 15:272-286. [PMID: 30890779 DOI: 10.1038/s41582-019-0157-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomolecular condensation arising through phase transitions has emerged as an essential organizational strategy that governs many aspects of cell biology. In particular, the role of phase transitions in the assembly of large, complex ribonucleoprotein (RNP) granules has become appreciated as an important regulator of RNA metabolism. In parallel, genetic, histopathological and cell and molecular studies have provided evidence that disturbance of phase transitions is an important driver of neurological diseases, notably amyotrophic lateral sclerosis (ALS), but most likely also other diseases. Indeed, our growing knowledge of the biophysics underlying biological phase transitions suggests that this process offers a unifying mechanism to explain the numerous and diverse disturbances in RNA metabolism that have been observed in ALS and some related diseases - specifically, that these diseases are driven by disturbances in the material properties of RNP granules. Here, we review the evidence for this hypothesis, emphasizing the reciprocal roles in which disease-related protein and disease-related RNA can lead to disturbances in the material properties of RNP granules and consequent pathogenesis. Additionally, we review evidence that implicates aberrant phase transitions as a contributing factor to a larger set of neurodegenerative diseases, including frontotemporal dementia, certain repeat expansion diseases and Alzheimer disease.
Collapse
|
6
|
The nuclear matrix protein Matr3 regulates processing of the synaptic microRNA-138-5p. Neurobiol Learn Mem 2019; 159:36-45. [PMID: 30790622 DOI: 10.1016/j.nlm.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/16/2019] [Accepted: 02/17/2019] [Indexed: 12/14/2022]
Abstract
microRNA-dependent post-transcriptional control represents an important gene-regulatory layer in post-mitotic neuronal development and synaptic plasticity. We recently identified the brain-enriched miR-138 as a negative regulator of dendritic spine morphogenesis in rat hippocampal neurons. A potential involvement of miR-138 in cognition is further supported by a recent GWAS study on memory performance in a cohort of aged (>60 years) individuals. The expression of miR-138, which is encoded in two independent genomic loci (miR-138-1 and -2), is subject to both cell-type and developmental stage-specific regulation, the underlying molecular mechanisms however are poorly understood. Here, we show that miR-138-2 is the primary source of mature miR-138 in developing rat hippocampal neurons. Furthermore, we obtained evidence for the regulation of miR-138-2 biogenesis at the level of primary miRNA processing. Using biochemical pull-down assays, we identified the nuclear matrix protein Matrin-3 as pri/pre-miR-138 interacting protein and mapped the interaction to the pri/pre-miR-138-2 loop region. Matrin-3 loss-of-function experiments in HEK293 cells and primary neurons together with protein localization studies suggest an inhibitory function of Matrin-3 in nuclear pri-miR-138-2 processing. Together, our experiments unravel a new mechanism of miR-138 regulation in neurons, with important implications for miR-138 regulation during neuronal development, synaptic plasticity and memory-related processes.
Collapse
|
7
|
Chambers DM, Moretti L, Zhang JJ, Cooper SW, Chambers DM, Santangelo PJ, Barker TH. LEM domain-containing protein 3 antagonizes TGFβ-SMAD2/3 signaling in a stiffness-dependent manner in both the nucleus and cytosol. J Biol Chem 2018; 293:15867-15886. [PMID: 30108174 DOI: 10.1074/jbc.ra118.003658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
Transforming growth factor-β (TGFβ) signaling through SMAD2/3 is an important driver of pathological fibrosis in multiple organ systems. TGFβ signaling and extracellular matrix (ECM) stiffness form an unvirtuous pathological circuit in which matrix stiffness drives activation of latent TGFβ, and TGFβ signaling then drives cellular stress and ECM synthesis. Moreover, ECM stiffness also appears to sensitize cells to exogenously activated TGFβ through unknown mechanisms. Here, using human fibroblasts, we explored the effect of ECM stiffness on a putative inner nuclear membrane protein, LEM domain-containing protein 3 (LEMD3), which is physically connected to the cell's actin cytoskeleton and inhibits TGFβ signaling. We showed that LEMD3-SMAD2/3 interactions are inversely correlated with ECM stiffness and TGFβ-driven luciferase activity and that LEMD3 expression is correlated with the mechanical response of the TGFβ-driven luciferase reporter. We found that actin polymerization but not cellular stress or LEMD3-nuclear-cytoplasmic couplings were necessary for LEMD3-SMAD2/3 interactions. Intriguingly, LEMD3 and SMAD2/3 frequently interacted in the cytosol, and we discovered LEMD3 was proteolytically cleaved into protein fragments. We confirmed that a consensus C-terminal LEMD3 fragment binds SMAD2/3 in a stiffness-dependent manner throughout the cell and is sufficient for antagonizing SMAD2/3 signaling. Using human lung biopsies, we observed that these nuclear and cytosolic interactions are also present in tissue and found that fibrotic tissues exhibit locally diminished and cytoplasmically shifted LEMD3-SMAD2/3 interactions, as noted in vitro Our work reveals novel LEMD3 biology and stiffness-dependent regulation of TGFβ by LEMD3, providing a novel target to antagonize pathological TGFβ signaling.
Collapse
Affiliation(s)
- Dwight M Chambers
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Leandro Moretti
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, and
| | - Jennifer J Zhang
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Spencer W Cooper
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Davis M Chambers
- the College of Arts and Sciences, Georgia State University, Atlanta, Georgia 30303
| | - Philip J Santangelo
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Thomas H Barker
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, and
| |
Collapse
|
8
|
Macro roles for microRNAs in neurodegenerative diseases. Noncoding RNA Res 2018; 3:154-159. [PMID: 30175288 PMCID: PMC6114258 DOI: 10.1016/j.ncrna.2018.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) are typically adult-onset progressive disorders that perturb neuronal function, plasticity and health that arise through a host of one or more genetic and/or environmental factors. Over the last decade, numerous studies have shown that mutations in RNA binding proteins and changes in miRNA profiles within the brain are significantly altered during the progression towards NDs – suggesting miRNAs may be one of these contributing factors. Interestingly, the molecular and cellular functions of miRNAs in NDs is largely understudied and could remain a possible avenue for exploring therapeutic treatments for various NDs. In this review, I describe findings which have implicated miRNAs in various NDs and discuss how future studies focused around miRNA-mediated gene silencing could aid in furthering our understanding of maintaining a healthy brain.
Collapse
|
9
|
Malik AM, Miguez RA, Li X, Ho YS, Feldman EL, Barmada SJ. Matrin 3-dependent neurotoxicity is modified by nucleic acid binding and nucleocytoplasmic localization. eLife 2018; 7:e35977. [PMID: 30015619 PMCID: PMC6050042 DOI: 10.7554/elife.35977] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/01/2018] [Indexed: 12/12/2022] Open
Abstract
Abnormalities in nucleic acid processing are associated with the development of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in Matrin 3 (MATR3), a poorly understood DNA- and RNA-binding protein, cause familial ALS/FTD, and MATR3 pathology is a feature of sporadic disease, suggesting that MATR3 dysfunction is integrally linked to ALS pathogenesis. Using a rat primary neuron model to assess MATR3-mediated toxicity, we noted that neurons were bidirectionally vulnerable to MATR3 levels, with pathogenic MATR3 mutants displaying enhanced toxicity. MATR3's zinc finger domains partially modulated toxicity, but elimination of its RNA recognition motifs had no effect on survival, instead facilitating its self-assembly into liquid-like droplets. In contrast to other RNA-binding proteins associated with ALS, cytoplasmic MATR3 redistribution mitigated neurodegeneration, suggesting that nuclear MATR3 mediates toxicity. Our findings offer a foundation for understanding MATR3-related neurodegeneration and how nucleic acid binding functions, localization, and pathogenic mutations drive sporadic and familial disease.
Collapse
Affiliation(s)
- Ahmed M Malik
- Medical Scientist Training ProgramUniversity of MichiganAnn ArborUnited States
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborUnited States
| | - Roberto A Miguez
- Department of NeurologyUniversity of MichiganAnn ArborUnited States
| | - Xingli Li
- Department of NeurologyUniversity of MichiganAnn ArborUnited States
| | - Ye-Shih Ho
- Institute of Environmental Health SciencesWayne State UniversityDetroitUnited States
| | - Eva L Feldman
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborUnited States
- Department of NeurologyUniversity of MichiganAnn ArborUnited States
- Program for Neurology Research and DiscoveryUniversity of MichiganAnn ArborUnited States
| | - Sami J Barmada
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborUnited States
- Department of NeurologyUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
10
|
Purice MD, Taylor JP. Linking hnRNP Function to ALS and FTD Pathology. Front Neurosci 2018; 12:326. [PMID: 29867335 PMCID: PMC5962818 DOI: 10.3389/fnins.2018.00326] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Following years of rapid progress identifying the genetic underpinnings of amyotrophic lateral sclerosis (ALS) and related diseases such as frontotemporal dementia (FTD), remarkable consistencies have emerged pointing to perturbed biology of heterogeneous nuclear ribonucleoproteins (hnRNPs) as a central driver of pathobiology. To varying extents these RNA-binding proteins are deposited in pathological inclusions in affected tissues in ALS and FTD. Moreover, mutations in hnRNPs account for a significant number of familial cases of ALS and FTD. Here we review the normal function and potential pathogenic contribution of TDP-43, FUS, hnRNP A1, hnRNP A2B1, MATR3, and TIA1 to disease. We highlight recent evidence linking the low complexity sequence domains (LCDs) of these hnRNPs to the formation of membraneless organelles and discuss how alterations in the dynamics of these organelles could contribute to disease. In particular, we discuss the various roles of disease-associated hnRNPs in stress granule assembly and disassembly, and examine the emerging hypothesis that disease-causing mutations in these proteins lead to accumulation of persistent stress granules.
Collapse
Affiliation(s)
- Maria D Purice
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States.,Howard Hughes Medical Institute, Chevy Chase, MD, United States
| |
Collapse
|
11
|
Mensch A, Meinhardt B, Bley N, Hüttelmaier S, Schneider I, Stoltenburg-Didinger G, Kraya T, Müller T, Zierz S. The p.S85C-mutation in MATR3 impairs stress granule formation in Matrin-3 myopathy. Exp Neurol 2018; 306:222-231. [PMID: 29763601 DOI: 10.1016/j.expneurol.2018.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/10/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Alexander Mensch
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany.
| | - Beate Meinhardt
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Martin Luther University of Halle-Wittenberg, Kurt-Mothes-Str. 3A, 06112 Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University of Halle-Wittenberg, Kurt-Mothes-Str. 3A, 06112 Halle, Germany
| | - Ilka Schneider
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| | - Gisela Stoltenburg-Didinger
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany; Institute of Cell and Neurobiology, Charité University Medicine Berlin, CCO Virchowweg 6, 10117 Berlin, Germany
| | - Torsten Kraya
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| | - Tobias Müller
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| | - Stephan Zierz
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| |
Collapse
|