1
|
Ghanegolmohammadi F, Eslami M, Ohya Y. Systematic data analysis pipeline for quantitative morphological cell phenotyping. Comput Struct Biotechnol J 2024; 23:2949-2962. [PMID: 39104709 PMCID: PMC11298594 DOI: 10.1016/j.csbj.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Quantitative morphological phenotyping (QMP) is an image-based method used to capture morphological features at both the cellular and population level. Its interdisciplinary nature, spanning from data collection to result analysis and interpretation, can lead to uncertainties, particularly among those new to this actively growing field. High analytical specificity for a typical QMP is achieved through sophisticated approaches that can leverage subtle cellular morphological changes. Here, we outline a systematic workflow to refine the QMP methodology. For a practical review, we describe the main steps of a typical QMP; in each step, we discuss the available methods, their applications, advantages, and disadvantages, along with the R functions and packages for easy implementation. This review does not cover theoretical backgrounds, but provides several references for interested researchers. It aims to broaden the horizons for future phenome studies and demonstrate how to exploit years of endeavors to achieve more with less.
Collapse
Affiliation(s)
- Farzan Ghanegolmohammadi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Mohammad Eslami
- Harvard Ophthalmology AI Lab, Schepen’s Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, USA
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
2
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
3
|
Ohya Y, Ghanegolmohammadi F, Itto-Nakama K. Application of unimodal probability distribution models for morphological phenotyping of budding yeast. FEMS Yeast Res 2024; 24:foad056. [PMID: 38169030 PMCID: PMC10804223 DOI: 10.1093/femsyr/foad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/28/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024] Open
Abstract
Morphological phenotyping of the budding yeast Saccharomyces cerevisiae has helped to greatly clarify the functions of genes and increase our understanding of cellular functional networks. It is necessary to understand cell morphology and perform quantitative morphological analysis (QMA) but assigning precise values to morphological phenotypes has been challenging. We recently developed the Unimodal Morphological Data image analysis pipeline for this purpose. All true values can be estimated theoretically by applying an appropriate probability distribution if the distribution of experimental values follows a unimodal pattern. This reliable pipeline allows several downstream analyses, including detection of subtle morphological differences, selection of mutant strains with similar morphology, clustering based on morphology, and study of morphological diversity. In addition to basic research, morphological analyses of yeast cells can also be used in applied research to monitor breeding and fermentation processes and control the fermentation activity of yeast cells.
Collapse
Affiliation(s)
- Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Farzan Ghanegolmohammadi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Kaori Itto-Nakama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
4
|
Ghanegolmohammadi F, Ohnuki S, Ohya Y. Assignment of unimodal probability distribution models for quantitative morphological phenotyping. BMC Biol 2022; 20:81. [PMID: 35361198 PMCID: PMC8969357 DOI: 10.1186/s12915-022-01283-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/17/2022] [Indexed: 01/02/2023] Open
Abstract
Background Cell morphology is a complex and integrative readout, and therefore, an attractive measurement for assessing the effects of genetic and chemical perturbations to cells. Microscopic images provide rich information on cell morphology; therefore, subjective morphological features are frequently extracted from digital images. However, measured datasets are fundamentally noisy; thus, estimation of the true values is an ultimate goal in quantitative morphological phenotyping. Ideal image analyses require precision, such as proper probability distribution analyses to detect subtle morphological changes, recall to minimize artifacts due to experimental error, and reproducibility to confirm the results. Results Here, we present UNIMO (UNImodal MOrphological data), a reliable pipeline for precise detection of subtle morphological changes by assigning unimodal probability distributions to morphological features of the budding yeast cells. By defining the data type, followed by validation using the model selection method, examination of 33 probability distributions revealed nine best-fitting probability distributions. The modality of the distribution was then clarified for each morphological feature using a probabilistic mixture model. Using a reliable and detailed set of experimental log data of wild-type morphological replicates, we considered the effects of confounding factors. As a result, most of the yeast morphological parameters exhibited unimodal distributions that can be used as basic tools for powerful downstream parametric analyses. The power of the proposed pipeline was confirmed by reanalyzing morphological changes in non-essential yeast mutants and detecting 1284 more mutants with morphological defects compared with a conventional approach (Box–Cox transformation). Furthermore, the combined use of canonical correlation analysis permitted global views on the cellular network as well as new insights into possible gene functions. Conclusions Based on statistical principles, we showed that UNIMO offers better predictions of the true values of morphological measurements. We also demonstrated how these concepts can provide biologically important information. This study draws attention to the necessity of employing a proper approach to do more with less. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01283-6.
Collapse
Affiliation(s)
- Farzan Ghanegolmohammadi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bldg. FSB-101, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bldg. FSB-101, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bldg. FSB-101, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8562, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
5
|
Peng L, Du J, Zhang R, Zhu N, Zhao H, Zhao Q, Yu Q, Li M. The Transient Receptor Potential Channel Yvc1 Deletion Recovers the Growth Defect of Calcineurin Mutant Under Endoplasmic Reticulum Stress in Candida albicans. Front Microbiol 2021; 12:752670. [PMID: 34917046 PMCID: PMC8669648 DOI: 10.3389/fmicb.2021.752670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Transient receptor potential (TRP) channel Yvc1 was related with hyphal growth, oxidative stress response, and pathogenicity. Calcineurin subunit Cnb1 was activated immediately in yeasts when exposed to severe stimulation. However, the relationship between Yvc1 and Cnb1-governed calcium ions and endoplasmic reticulum (ER) stress response remains unrevealed. In this study, we found that the mutant cnb1Δ/Δ was sensitive to TN, which was related with the overexpression of membrane calcium ion channels that could increase the cytosol calcium concentration. However, the growth of the cnb1Δ/Δyvc1Δ/Δ mutant was recovered and its cell vitality was better than the cnb1Δ/Δ strain. Meanwhile, the cellular calcium concentration was decreased and its fluctuation was weakened under ER stress in the cnb1Δ/Δyvc1Δ/Δ strain. To verify the regulation role of Yvc1 in the calcium concentration, we found that the addition of CaCl2 led to the worse viability, while the growth state was relieved under the treatment of EGTA in the cnb1Δ/Δ strain. In conclusion, the deletion of YVC1 could reduce the cellular calcium and relieve the ER stress sensitivity of the cnb1Δ/Δ strain. Thereby, our findings shed a novel light on the relationship between the Yvc1-governed cellular calcium concentration and ER stress response in C. albicans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Computerized fluorescence microscopy of microbial cells. World J Microbiol Biotechnol 2021; 37:189. [PMID: 34617135 DOI: 10.1007/s11274-021-03159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
The upgrading of fluorescence microscopy by the introduction of computer technologies has led to the creation of a new methodology, computerized fluorescence microscopy (CFM). CFM improves subjective visualization and combines it with objective quantitative analysis of the microscopic data. CFM has opened up two fundamentally new opportunities for studying microorganisms. The first is the quantitative measurement of the fluorescence parameters of the targeted fluorophores in association with certain structures of individual cells. The second is the expansion of the boundaries of visualization/resolution of intracellular components beyond the "diffraction limit" of light microscopy into the nanometer range. This enables to obtain unique information about the localization and dynamics of intracellular processes at the molecular level. The purpose of this review is to demonstrate the potential of CFM in the study of fundamental aspects of the structural and functional organization of microbial cells. The basics of computer processing and analysis of digital images are briefly described. The fluorescent molecules used in CFM with an emphasis on fluorescent proteins are characterized. The main methods of super-resolution microscopy (nanoscopy) are presented. The capabilities of various CFM methods for exploring microbial cells at the subcellular level are illustrated by the examples of various studies on yeast and bacteria.
Collapse
|
7
|
Ghanegolmohammadi F, Okada H, Liu Y, Itto-Nakama K, Ohnuki S, Savchenko A, Bi E, Yoshida S, Ohya Y. Defining Functions of Mannoproteins in Saccharomyces cerevisiae by High-Dimensional Morphological Phenotyping. J Fungi (Basel) 2021; 7:jof7090769. [PMID: 34575807 PMCID: PMC8466635 DOI: 10.3390/jof7090769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Mannoproteins are non-filamentous glycoproteins localized to the outermost layer of the yeast cell wall. The physiological roles of these structural components have not been completely elucidated due to the limited availability of appropriate tools. As the perturbation of mannoproteins may affect cell morphology, we investigated mannoprotein mutants in Saccharomyces cerevisiae via high-dimensional morphological phenotyping. The mannoprotein mutants were morphologically classified into seven groups using clustering analysis with Gaussian mixture modeling. The pleiotropic phenotypes of cluster I mutant cells (ccw12Δ) indicated that CCW12 plays major roles in cell wall organization. Cluster II (ccw14Δ, flo11Δ, srl1Δ, and tir3Δ) mutants exhibited altered mother cell size and shape. Mutants of cluster III and IV exhibited no or very small morphological defects. Cluster V (dse2Δ, egt2Δ, and sun4Δ) consisted of endoglucanase mutants with cell separation defects due to incomplete septum digestion. The cluster VI mutant cells (ecm33Δ) exhibited perturbation of apical bud growth. Cluster VII mutant cells (sag1Δ) exhibited differences in cell size and actin organization. Biochemical assays further confirmed the observed morphological defects. Further investigations based on various omics data indicated that morphological phenotyping is a complementary tool that can help with gaining a deeper understanding of the functions of mannoproteins.
Collapse
Affiliation(s)
- Farzan Ghanegolmohammadi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.O.); (E.B.)
| | - Yaxuan Liu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
| | - Kaori Itto-Nakama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
| | - Anna Savchenko
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, ER 6229 Maastricht, The Netherlands
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.O.); (E.B.)
| | - Satoshi Yoshida
- School of International Liberal Studies, Nishi-Waseda Campus, Waseda University, Tokyo 169-8050, Japan;
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
- Correspondence:
| |
Collapse
|
8
|
Zimmermannova O, Felcmanova K, Sacka L, Colinet AS, Morsomme P, Sychrova H. K+-specific importers Trk1 and Trk2 play different roles in Ca2+ homeostasis and signalling in Saccharomyces cerevisiae cells. FEMS Yeast Res 2021; 21:6152291. [PMID: 33640956 DOI: 10.1093/femsyr/foab015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/24/2021] [Indexed: 01/06/2023] Open
Abstract
The maintenance of K+ and Ca2+ homeostasis is crucial for many cellular functions. Potassium is accumulated in cells at high concentrations, while the cytosolic level of calcium, to ensure its signalling function, is kept at low levels and transiently increases in response to stresses. We examined Ca2+ homeostasis and Ca2+ signalling in Saccharomyces cerevisiae strains lacking plasma-membrane K+ influx (Trk1 and Trk2) or efflux (Tok1, Nha1 and Ena1-5) systems. The lack of K+ exporters slightly increased the cytosolic Ca2+, but did not alter the Ca2+ tolerance or Ca2+-stress response. In contrast, the K+-importers Trk1 and Trk2 play important and distinct roles in the maintenance of Ca2+ homeostasis. The presence of Trk1 was vital mainly for the growth of cells in the presence of high extracellular Ca2+, whilst the lack of Trk2 doubled steady-state intracellular Ca2+ levels. The absence of both K+ importers highly increased the Ca2+ response to osmotic or CaCl2 stresses and altered the balance between Ca2+ flux from external media and intracellular compartments. In addition, we found Trk2 to be important for the tolerance to high KCl and hygromycin B in cells growing on minimal media. All the data describe new interconnections between potassium and calcium homeostasis in S. cerevisiae.
Collapse
Affiliation(s)
- Olga Zimmermannova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 - Krc, 142 20, Czech Republic
| | - Kristina Felcmanova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 - Krc, 142 20, Czech Republic
| | - Lenka Sacka
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 - Krc, 142 20, Czech Republic
| | - Anne-Sophie Colinet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B 1348, Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B 1348, Louvain-la-Neuve, Belgium
| | - Hana Sychrova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 - Krc, 142 20, Czech Republic
| |
Collapse
|
9
|
Ohnuki S, Ohya Y. High-dimensional single-cell phenotyping reveals extensive haploinsufficiency. PLoS Biol 2018; 16:e2005130. [PMID: 29768403 PMCID: PMC5955526 DOI: 10.1371/journal.pbio.2005130] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/06/2018] [Indexed: 12/17/2022] Open
Abstract
Haploinsufficiency, a dominant phenotype caused by a heterozygous loss-of-function mutation, has been rarely observed. However, high-dimensional single-cell phenotyping of yeast morphological characteristics revealed haploinsufficiency phenotypes for more than half of 1,112 essential genes under optimal growth conditions. Additionally, 40% of the essential genes with no obvious phenotype under optimal growth conditions displayed haploinsufficiency under severe growth conditions. Haploinsufficiency was detected more frequently in essential genes than in nonessential genes. Similar haploinsufficiency phenotypes were observed mostly in mutants with heterozygous deletion of functionally related genes, suggesting that haploinsufficiency phenotypes were caused by functional defects of the genes. A global view of the gene network was presented based on the similarities of the haploinsufficiency phenotypes. Our dataset contains rich information regarding essential gene functions, providing evidence that single-cell phenotyping is a powerful approach, even in the heterozygous condition, for analyzing complex biological systems. Diploid organisms harboring a wild-type gene and a loss-of-function mutation are called heterozygotes. They are expected to have weak or no individual phenotypes because the mutation is compensated for by the intact allele. The dominant inheritance of phenotypes in heterozygotes is an exceptional phenomenon called haploinsufficiency. Haploinsufficiency was thought to be a rare occurrence; however, a sensitive technique called high-dimensional single-cell phenotyping challenges this perspective. Investigations of single-cell phenotypes revealed that a large extent of the essential genes in yeast exhibit haploinsufficiency. Our analyses also provided crucial information on gene functional networks based on haploinsufficiency phenotypes. This work shows that high-dimensional single-cell phenotyping is a useful tool that can be used to better understand complex biological systems.
Collapse
Affiliation(s)
- Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, Japan
- * E-mail:
| |
Collapse
|