1
|
Ansari M, Faour KNW, Shimamura A, Grimes G, Kao EM, Denhoff ER, Blatnik A, Ben-Isvy D, Wang L, Helm BM, Firth H, Breman AM, Bijlsma EK, Iwata-Otsubo A, de Ravel TJL, Fusaro V, Fryer A, Nykamp K, Stühn LG, Haack TB, Korenke GC, Constantinou P, Bujakowska KM, Low KJ, Place E, Humberson J, Napier MP, Hoffman J, Juusola J, Deardorff MA, Shao W, Rockowitz S, Krantz I, Kaur M, Raible S, Dortenzio V, Kliesch S, Singer-Berk M, Groopman E, DiTroia S, Ballal S, Srivastava S, Rothfelder K, Biskup S, Rzasa J, Kerkhof J, McConkey H, Sadikovic B, Hilton S, Banka S, Tüttelmann F, Conrad DF, O'Donnell-Luria A, Talkowski ME, FitzPatrick DR, Boone PM. Heterozygous loss-of-function SMC3 variants are associated with variable growth and developmental features. HGG ADVANCES 2024; 5:100273. [PMID: 38297832 PMCID: PMC10876629 DOI: 10.1016/j.xhgg.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.
Collapse
Affiliation(s)
- Morad Ansari
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Kamli N W Faour
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, USA
| | - Akiko Shimamura
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Graeme Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Emeline M Kao
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Erica R Denhoff
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Ana Blatnik
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Department of Clinical Cancer Genetics, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Daniel Ben-Isvy
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Lily Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Benjamin M Helm
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Helen Firth
- Clinical Genetics, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Amy M Breman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Aiko Iwata-Otsubo
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomy J L de Ravel
- Centre for Human Genetics, UZ Leuven/Leuven University Hospitals, Leuven, Belgium
| | | | - Alan Fryer
- Department of Clinical Genetics, Alder Hey Children's Hospital Liverpool, Liverpool, UK
| | | | - Lara G Stühn
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - G Christoph Korenke
- Department of Neuropaediatric and Metabolic Diseases, University Children's Hospital Oldenburg, Oldenburg, Germany
| | - Panayiotis Constantinou
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Karen J Low
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK; University of Bristol, Bristol, UK
| | - Emily Place
- Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | | | | | | | | | - Matthew A Deardorff
- Departments of Pathology and Pediatrics, Children's Hospital Los Angeles and University of Southern California, Los Angeles, CA, USA
| | - Wanqing Shao
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Shira Rockowitz
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Research Computing, Information Technology, Boston Children's Hospital, Boston, MA, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Ian Krantz
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maninder Kaur
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah Raible
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Moriel Singer-Berk
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emily Groopman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie DiTroia
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sonia Ballal
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Siddharth Srivastava
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, USA; Divison of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | - Saskia Biskup
- Zentrum für Humangenetik, Tübingen, Germany; Center for Genomics and Transcriptomics (CeGaT), Tübingen, Germany
| | - Jessica Rzasa
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Bekim Sadikovic
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Sarah Hilton
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, USA; Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, USA
| | - Anne O'Donnell-Luria
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael E Talkowski
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Philip M Boone
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Ansari M, Faour KNW, Shimamura A, Grimes G, Kao EM, Denhoff ER, Blatnik A, Ben-Isvy D, Wang L, Helm BM, Firth H, Breman AM, Bijlsma EK, Iwata-Otsubo A, de Ravel TJL, Fusaro V, Fryer A, Nykamp K, Stühn LG, Haack TB, Korenke GC, Constantinou P, Bujakowska KM, Low KJ, Place E, Humberson J, Napier MP, Hoffman J, Juusola J, Deardorff MA, Shao W, Rockowitz S, Krantz I, Kaur M, Raible S, Kliesch S, Singer-Berk M, Groopman E, DiTroia S, Ballal S, Srivastava S, Rothfelder K, Biskup S, Rzasa J, Kerkhof J, McConkey H, O'Donnell-Luria A, Sadikovic B, Hilton S, Banka S, Tüttelmann F, Conrad D, Talkowski ME, FitzPatrick DR, Boone PM. Heterozygous loss-of-function SMC3 variants are associated with variable and incompletely penetrant growth and developmental features. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.27.23294269. [PMID: 37808847 PMCID: PMC10557843 DOI: 10.1101/2023.09.27.23294269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 13 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated a milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, some instead having intriguing symptomatologies with rational biological links to SMC3 including bone marrow failure, acute myeloid leukemia, and Coats retinal vasculopathy. Analyses of transcriptomic and epigenetic data suggest that SMC3 pLoF variants reduce SMC3 expression but do not result in a blood DNA methylation signature clustering with that of CdLS, and that the global transcriptional signature of SMC3 loss is model-dependent. Our finding of substantial population-scale LoF intolerance in concert with variable penetrance in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multi-layered genomic data paired with careful phenotyping.
Collapse
Affiliation(s)
- Morad Ansari
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- These authors contributed equally
| | - Kamli N W Faour
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, US
- These authors contributed equally
| | - Akiko Shimamura
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA, US
| | - Graeme Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Emeline M Kao
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, US
| | - Erica R Denhoff
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, US
| | - Ana Blatnik
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Department of Clinical Cancer Genetics, Institute of Oncology Ljubljana, Ljubljana, SI
| | - Daniel Ben-Isvy
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, US
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
- Division of Medical Sciences, Harvard Medical School, Boston, MA, US
| | - Lily Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, US
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
- Division of Medical Sciences, Harvard Medical School, Boston, MA, US
| | - Benjamin M Helm
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, US
| | - Helen Firth
- Clinical Genetics, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Amy M Breman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, US
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, NL
| | - Aiko Iwata-Otsubo
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, US
| | - Thomy J L de Ravel
- Centre for Human Genetics, UZ Leuven/ Leuven University Hospitals, Leuven, BE
| | | | - Alan Fryer
- Department of Clinical Genetics, Alder Hey Children's Hospital Liverpool, Liverpool, UK
| | | | - Lara G Stühn
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, DE
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, DE
| | - G Christoph Korenke
- University Children's Hospital Oldenburg, Department of Neuropaediatric and Metabolic Diseases, University Children's Hospital Oldenburg, Oldenburg, DE
| | - Panayiotis Constantinou
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Karen J Low
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- University of Bristol, Bristol, UK
| | - Emily Place
- Massachusetts Eye and Ear Infirmary, Boston, MA, US
| | | | | | | | | | - Matthew A Deardorff
- Departments of Pathology and Pediatrics, Children's Hospital Los Angeles and University of Southern California, Los Angeles, CA, US
| | - Wanqing Shao
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA, US
| | - Shira Rockowitz
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA, US
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, US
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US
| | - Ian Krantz
- Children's Hospital of Philadelphia, Philadelphia, PA, US
| | - Maninder Kaur
- Children's Hospital of Philadelphia, Philadelphia, PA, US
| | - Sarah Raible
- Children's Hospital of Philadelphia, Philadelphia, PA, US
| | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, DE
| | - Moriel Singer-Berk
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Emily Groopman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Stephanie DiTroia
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Sonia Ballal
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, US
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, US
| | - Siddharth Srivastava
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, US
- Divison of Neurology, Boston Children's Hospital, Boston, MA, US
| | | | - Saskia Biskup
- Zentrum für Humangenetik, Tübingen, DE
- Center for Genomics and Transcriptomics (CeGaT), Tübingen, DE
| | - Jessica Rzasa
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, LHSC, London, CA
| | - Jennifer Kerkhof
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, LHSC, London, CA
| | - Haley McConkey
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, LHSC, London, CA
| | - Anne O'Donnell-Luria
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, US
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Bekim Sadikovic
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, LHSC, London, CA
| | | | | | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, DE
| | - Donald Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, US
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, US
| | - Michael E Talkowski
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, US
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- These authors contributed equally
| | - Philip M Boone
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, US
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, US
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, US
- These authors contributed equally
| |
Collapse
|
3
|
Boardman K, Xiang S, Chatterjee F, Mbonu U, Guacci V, Koshland D. A model for Scc2p stimulation of cohesin's ATPase and its inhibition by acetylation of Smc3p. Genes Dev 2023; 37:277-290. [PMID: 37055084 PMCID: PMC10153460 DOI: 10.1101/gad.350278.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
The evolutionarily conserved cohesin complex mediates sister chromatid cohesion and facilitates mitotic chromosome condensation, DNA repair, and transcription regulation. These biological functions require cohesin's two ATPases, formed by the Smc1p and Smc3p subunits. Cohesin's ATPase activity is stimulated by the Scc2p auxiliary factor. This stimulation is inhibited by Eco1p acetylation of Smc3p at an interface with Scc2p. It was unclear how cohesin's ATPase activity is stimulated by Scc2p or how acetylation inhibits Scc2p, given that the acetylation site is distal to cohesin's ATPase active sites. Here, we identify mutations in budding yeast that suppressed the in vivo defects caused by Smc3p acetyl-mimic and acetyl-defective mutations. We provide compelling evidence that Scc2p activation of cohesin ATPase depends on an interface between Scc2p and a region of Smc1p proximal to cohesin's Smc3p ATPase active site. Furthermore, substitutions at this interface increase or decrease ATPase activity to overcome ATPase modulation by acetyl-mimic and acetyl-null mutations. Using these observations and an existing cryo-EM structure, we propose a model for regulating cohesin ATPase activity. We suggest that Scc2p binding to Smc1p causes the adjacent Smc1p residues and ATP to shift, stimulating Smc3p's ATPase. This stimulatory shift is inhibited through acetylation of the distal Scc2p-Smc3p interface.
Collapse
Affiliation(s)
- Kevin Boardman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Siheng Xiang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Fiona Chatterjee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Udochi Mbonu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Vincent Guacci
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Matityahu A, Onn I. It's all in the numbers: Cohesin stoichiometry. Front Mol Biosci 2022; 9:1010894. [PMID: 36330215 PMCID: PMC9623059 DOI: 10.3389/fmolb.2022.1010894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 01/09/2024] Open
Abstract
Cohesin, a structural maintenance of chromosome (SMC) complex, organizes chromatin into three-dimensional structures by threading chromatin into loops and stabilizing long-range chromatin interactions. Four subunits in a 1:1:1:1 ratio compose the cohesin core, which is regulated by auxiliary factors that interact with or modify the core subunits. An ongoing debate about cohesin's mechanism of action regards its stoichiometry. Namely, is cohesin activity mediated by a single complex or cooperation between several complexes that organize into dimers or oligomers? Several investigations that used various experimental approaches have tried to resolve this dispute. Some have convincingly demonstrated that the cohesin monomer is the active unit. However, others have revealed the formation of cohesin dimers and higher-order clusters on and off chromosomes. Elucidating the biological function of cohesin clusters and determining what regulates their formation are just two of the many new questions raised by these findings. We briefly review the history of the argument about cohesin stoichiometry and the central evidence for cohesin activity as a monomer vs. an oligomer. Finally, we discuss the possible biological significance of cohesin oligomerization and present open questions that remain to be answered.
Collapse
Affiliation(s)
| | - Itay Onn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Safed, Israel
| |
Collapse
|
5
|
Fisher GL, Bolla JR, Rajasekar KV, Mäkelä J, Baker R, Zhou M, Prince JP, Stracy M, Robinson CV, Arciszewska LK, Sherratt DJ. Competitive binding of MatP and topoisomerase IV to the MukB hinge domain. eLife 2021; 10:70444. [PMID: 34585666 PMCID: PMC8523169 DOI: 10.7554/elife.70444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes have ubiquitous roles in compacting DNA linearly, thereby promoting chromosome organization-segregation. Interaction between the Escherichia coli SMC complex, MukBEF, and matS-bound MatP in the chromosome replication termination region, ter, results in depletion of MukBEF from ter, a process essential for efficient daughter chromosome individualization and for preferential association of MukBEF with the replication origin region. Chromosome-associated MukBEF complexes also interact with topoisomerase IV (ParC2E2), so that their chromosome distribution mirrors that of MukBEF. We demonstrate that MatP and ParC have an overlapping binding interface on the MukB hinge, leading to their mutually exclusive binding, which occurs with the same dimer to dimer stoichiometry. Furthermore, we show that matS DNA competes with the MukB hinge for MatP binding. Cells expressing MukBEF complexes that are mutated at the ParC/MatP binding interface are impaired in ParC binding and have a mild defect in MukBEF function. These data highlight competitive binding as a means of globally regulating MukBEF-topoisomerase IV activity in space and time.
Collapse
Affiliation(s)
- Gemma Lm Fisher
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jani R Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom.,The Kavli Institute for Nanoscience Discovery, Oxford, United Kingdom
| | | | - Jarno Mäkelä
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Rachel Baker
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Man Zhou
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Josh P Prince
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom.,The Kavli Institute for Nanoscience Discovery, Oxford, United Kingdom
| | | | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Abstract
Cohesin helps mediate sister chromatid cohesion, chromosome condensation, DNA repair, and transcription regulation. We exploited proximity-dependent labeling to define the in vivo interactions of cohesin domains with DNA or with other cohesin domains that lie within the same or in different cohesin complexes. Our results suggest that both cohesin's head and hinge domains are proximal to DNA, and cohesin structure is dynamic with differential folding of its coiled coil regions to generate butterfly confirmations. This method also reveals that cohesins form ordered clusters on and off DNA. The levels of cohesin clusters and their distribution on chromosomes are cell cycle-regulated. Cohesin clustering is likely necessary for cohesion maintenance because clustering and maintenance uniquely require the same subset of cohesin domains and the auxiliary cohesin factor Pds5p. These conclusions provide important new mechanistic and biological insights into the architecture of the cohesin complex, cohesin-cohesin interactions, and cohesin's tethering and loop-extruding activities.
Collapse
Affiliation(s)
- Siheng Xiang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
7
|
Statello L, Ali MM, Reischl S, Mahale S, Kosalai ST, Huarte M, Kanduri C. The DNA damage inducible lncRNA SCAT7 regulates genomic integrity and topoisomerase 1 turnover in lung adenocarcinoma. NAR Cancer 2021; 3:zcab002. [PMID: 34316698 PMCID: PMC8209975 DOI: 10.1093/narcan/zcab002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the rapid improvements in unveiling the importance of lncRNAs in all aspects of cancer biology, there is still a void in mechanistic understanding of their role in the DNA damage response. Here we explored the potential role of the oncogenic lncRNA SCAT7 (ELF3-AS1) in the maintenance of genome integrity. We show that SCAT7 is upregulated in response to DNA-damaging drugs like cisplatin and camptothecin, where SCAT7 expression is required to promote cell survival. SCAT7 silencing leads to decreased proliferation of cisplatin-resistant cells in vitro and in vivo through interfering with cell cycle checkpoints and DNA repair molecular pathways. SCAT7 regulates ATR signaling, promoting homologous recombination. Importantly, SCAT7 also takes part in proteasome-mediated topoisomerase I (TOP1) degradation, and its depletion causes an accumulation of TOP1–cc structures responsible for the high levels of intrinsic DNA damage. Thus, our data demonstrate that SCAT7 is an important constituent of the DNA damage response pathway and serves as a potential therapeutic target for hard-to-treat drug resistant cancers.
Collapse
Affiliation(s)
- Luisa Statello
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Mohamad M Ali
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Silke Reischl
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Sagar Mahale
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Subazini Thankaswamy Kosalai
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
8
|
Zuilkoski CM, Skibbens RV. PCNA promotes context-specific sister chromatid cohesion establishment separate from that of chromatin condensation. Cell Cycle 2020; 19:2436-2450. [PMID: 32926661 PMCID: PMC7553509 DOI: 10.1080/15384101.2020.1804221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022] Open
Abstract
Cellular genomes undergo various structural changes that include cis tethering (the tethering together of two loci within a single DNA molecule), which promotes chromosome condensation and transcriptional activation, and trans tethering (the tethering together of two DNA molecules), which promotes sister chromatid cohesion and DNA repair. The protein complex termed cohesin promotes both cis and trans forms of DNA tethering, but the extent to which these cohesin functions occur in temporally or spatially defined contexts remains largely unknown. Prior studies indicate that DNA polymerase sliding clamp PCNA recruits cohesin acetyltransferase Eco1, suggesting that sister chromatid cohesion is established in the context of the DNA replication fork. In support of this model, elevated levels of PCNA rescue the temperature growth and cohesion defects exhibited by eco1 mutant cells. Here, we test whether Eco1-dependent chromatin condensation is also promoted in the context of this DNA replication fork component. Our results reveal that overexpressed PCNA does not promote DNA condensation in eco1 mutant cells, even though Smc3 acetylation levels are increased. We further provide evidence that replication fork-associated E3 ligase impacts on Eco1 are more complex that previously described. In combination, the data suggests that Eco1 acetylates Smc3 and thus promotes sister chromatid cohesion in context of the DNA replication fork, whereas a distinct cohesin population participates in chromatin condensation outside the context of the DNA replication fork.
Collapse
Affiliation(s)
- Caitlin M. Zuilkoski
- Department of Biological Sciences, Lehigh University, 18015, Bethlehem, Pennsylvania, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, 18015, Bethlehem, Pennsylvania, USA
| |
Collapse
|
9
|
Lamothe R, Costantino L, Koshland DE. The spatial regulation of condensin activity in chromosome condensation. Genes Dev 2020; 34:819-831. [PMID: 32354834 PMCID: PMC7263143 DOI: 10.1101/gad.335471.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/27/2020] [Indexed: 11/24/2022]
Abstract
Condensin mediates chromosome condensation, which is essential for proper chromosome segregation during mitosis. Prior to anaphase of budding yeast, the ribosomal DNA (RDN) condenses to a thin loop that is distinct from the rest of the chromosomes. We provide evidence that the establishment and maintenance of this RDN condensation requires the regulation of condensin by Cdc5p (polo) kinase. We show that Cdc5p is recruited to the site of condensin binding in the RDN by cohesin, a complex related to condensin. Cdc5p and cohesin prevent condensin from misfolding the RDN into an irreversibly decondensed state. From these and other observations, we propose that the spatial regulation of Cdc5p by cohesin modulates condensin activity to ensure proper RDN folding into a thin loop. This mechanism may be evolutionarily conserved, promoting the thinly condensed constrictions that occur at centromeres and RDN of mitotic chromosomes in plants and animals.
Collapse
Affiliation(s)
- Rebecca Lamothe
- University of California at Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
10
|
Dorsett D. The Many Roles of Cohesin in Drosophila Gene Transcription. Trends Genet 2019; 35:542-551. [PMID: 31130395 PMCID: PMC6571051 DOI: 10.1016/j.tig.2019.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
The cohesin protein complex mediates sister chromatid cohesion to ensure accurate chromosome segregation, and also influences gene transcription in higher eukaryotes. Modest deficits in cohesin function that do not alter chromosome segregation cause significant birth defects. The mechanisms by which cohesin participates in gene regulation have been studied in Drosophila, revealing that it is involved in gene activation by transcriptional enhancers and epigenetic gene silencing mediated by Polycomb group proteins. Recent studies reveal that early DNA replication origins are important for determining which genes associate with cohesin, and suggest that cohesin at replication origins is important for establishing both sister chromatid cohesion and enhancer-promoter communication.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
11
|
Guacci V, Chatterjee F, Robison B, Koshland DE. Communication between distinct subunit interfaces of the cohesin complex promotes its topological entrapment of DNA. eLife 2019; 8:e46347. [PMID: 31162048 PMCID: PMC6579514 DOI: 10.7554/elife.46347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Cohesin mediates higher order chromosome structure. Its biological activities require topological entrapment of DNA within a lumen(s) formed by cohesin subunits. The reversible dissociation of cohesin's Smc3p and Mcd1p subunits is postulated to form a regulated gate that allows DNA entry and exit into the lumen. We assessed gate-independent functions of this interface in yeast using a fusion protein that joins Smc3p to Mcd1p. We show that in vivo all the regulators of cohesin promote DNA binding of cohesin by mechanisms independent of opening this gate. Furthermore, we show that this interface has a gate-independent activity essential for cohesin to bind chromosomes. We propose that this interface regulates DNA entrapment by controlling the opening and closing of one or more distal interfaces formed by cohesin subunits, likely by inducing a conformation change in cohesin. Furthermore, cohesin regulators modulate the interface to control both DNA entrapment and cohesin functions after DNA binding.
Collapse
Affiliation(s)
- Vincent Guacci
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Fiona Chatterjee
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Brett Robison
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Douglas E Koshland
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|