1
|
Moscoso-Romero E, Moro S, Duque A, Yanguas F, Valdivieso MH. Pck2 association with the plasma membrane and efficient response of the cell integrity pathway require regulation of PI4P homeostasis by exomer. Open Biol 2024; 14:240101. [PMID: 39540318 PMCID: PMC11561738 DOI: 10.1098/rsob.240101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/19/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Exomer is a protein complex that facilitates trafficking between the Golgi and the plasma membrane (PM). Schizosaccharomyces pombe exomer is composed of Cfr1 and Bch1, and we have found that full activation of the cell integrity pathway (CIP) in response to osmotic stress requires exomer. In the wild-type, the CIP activators Rgf1 (Rho1 GEF) and Pck2 (PKC homologue) and the MEK kinase Mkh1 localize in the PM, internalize after osmotic shock and re-localize after adaptation. This re-localization is inefficient in exomer mutants. Overexpression of the PM-associated 1-phosphatidylinositol 4-kinase stt4+, and deletion of the nem1+ phosphatase suppress the defects in Pck2 dynamics in exomer mutants, but not their defect in CIP activation, demonstrating that exomer regulates CIP in additional ways. Exomer mutants accumulate PI4P in the TGN, and increasing the expression of the Golgi-associated 1-phosphatidylinositol 4-kinase pik1+ suppresses their defect in Pck2 dynamics. These findings suggest that efficient PI4P transport from the Golgi to the PM requires exomer. Mutants lacking clathrin adaptors are defective in CIP activation, but not in Pck2 dynamics or in PI4P accumulation in the Golgi. Hence, traffic from the Golgi regulates CIP activation, and exomer participates in this regulation through an exclusive mechanism.
Collapse
Affiliation(s)
- Esteban Moscoso-Romero
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca37007, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, Salamanca37007, Spain
| | - Sandra Moro
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca37007, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, Salamanca37007, Spain
| | - Alicia Duque
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca37007, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, Salamanca37007, Spain
| | - Francisco Yanguas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca37007, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, Salamanca37007, Spain
- Department of Biosciences, University of Oslo, Oslo0316, Norway
| | - M.-Henar Valdivieso
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca37007, Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, Salamanca37007, Spain
| |
Collapse
|
2
|
Chitin Synthesis in Yeast: A Matter of Trafficking. Int J Mol Sci 2022; 23:ijms232012251. [PMID: 36293107 PMCID: PMC9603707 DOI: 10.3390/ijms232012251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Chitin synthesis has attracted scientific interest for decades as an essential part of fungal biology and for its potential as a target for antifungal therapies. While this interest remains, three decades ago, pioneering molecular studies on chitin synthesis regulation identified the major chitin synthase in yeast, Chs3, as an authentic paradigm in the field of the intracellular trafficking of integral membrane proteins. Over the years, researchers have shown how the intracellular trafficking of Chs3 recapitulates all the steps in the intracellular trafficking of integral membrane proteins, from their synthesis in the endoplasmic reticulum to their degradation in the vacuole. This trafficking includes specific mechanisms for sorting in the trans-Golgi network, regulated endocytosis, and endosomal recycling at different levels. This review summarizes the work carried out on chitin synthesis regulation, mostly focusing on Chs3 as a molecular model to study the mechanisms involved in the control of the intracellular trafficking of proteins.
Collapse
|
3
|
Moro S, Moscoso-Romero E, Poddar A, Mulet JM, Perez P, Chen Q, Valdivieso MH. Exomer Is Part of a Hub Where Polarized Secretion and Ionic Stress Connect. Front Microbiol 2021; 12:708354. [PMID: 34349749 PMCID: PMC8326576 DOI: 10.3389/fmicb.2021.708354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Plasma membrane and membranous organelles contribute to the physiology of the Eukaryotic cell by participating in vesicle trafficking and the maintenance of ion homeostasis. Exomer is a protein complex that facilitates vesicle transport from the trans-Golgi network to the plasma membrane, and its absence leads to the retention of a set of selected cargoes in this organelle. However, this retention does not explain all phenotypes observed in exomer mutants. The Schizosaccharomyces pombe exomer is composed of Cfr1 and Bch1, and cfr1Δ and bch1Δ were sensitive to high concentrations of potassium salts but not sorbitol, which showed sensitivity to ionic but not osmotic stress. Additionally, the activity of the plasma membrane ATPase was higher in exomer mutants than in the wild-type, pointing to membrane hyperpolarization, which caused an increase in intracellular K+ content and mild sensitivity to Na+, Ca2+, and the aminoglycoside antibiotic hygromycin B. Moreover, in response to K+ shock, the intracellular Ca2+ level of cfr1Δ cells increased significantly more than in the wild-type, likely due to the larger Ca2+ spikes in the mutant. Microscopy analyses showed a defective endosomal morphology in the mutants. This was accompanied by an increase in the intracellular pools of the K+ exporting P-type ATPase Cta3 and the plasma membrane Transient Receptor Potential (TRP)-like Ca2+ channel Pkd2, which were partially diverted from the trans-Golgi network to the prevacuolar endosome. Despite this, most Cta3 and Pkd2 were delivered to the plasma membrane at the cell growing sites, showing that their transport from the trans-Golgi network to the cell surface occurred in the absence of exomer. Nevertheless, shortly after gene expression in the presence of KCl, the polarized distribution of Cta3 and Pkd2 in the plasma membrane was disturbed in the mutants. Finally, the use of fluorescent probes suggested that the distribution and dynamics of association of some lipids to the plasma membrane in the presence of KCl were altered in the mutants. Thus, exomer participation in the response to K+ stress was multifaceted. These results supported the notion that exomer plays a general role in protein sorting at the trans-Golgi network and in polarized secretion, which is not always related to a function as a selective cargo adaptor.
Collapse
Affiliation(s)
- Sandra Moro
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Esteban Moscoso-Romero
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Abhishek Poddar
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Jose M Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Pilar Perez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Qian Chen
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - M-Henar Valdivieso
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
4
|
Anton-Plagaro C, Sanchez N, Valle R, Mulet JM, Duncan MC, Roncero C. Exomer complex regulates protein traffic at the TGN through differential interactions with cargos and clathrin adaptor complexes. FASEB J 2021; 35:e21615. [PMID: 33978245 DOI: 10.1096/fj.202002610r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
Protein sorting at the trans-Golgi network (TGN) usually requires the assistance of cargo adaptors. However, it remains to be examined how the same complex can mediate both the export and retention of different proteins or how sorting complexes interact among themselves. In Saccharomyces cerevisiae, the exomer complex is involved in the polarized transport of some proteins from the TGN to the plasma membrane (PM). Intriguingly, exomer and its cargos also show a sort of functional relationship with TGN clathrin adaptors that is still unsolved. Here, using a wide range of techniques, including time-lapse and BIFC microscopy, we describe new molecular implications of the exomer complex in protein sorting and address its different layers of functional interaction with clathrin adaptor complexes. Exomer mutants show impaired amino acid uptake because it facilitates not only the polarized delivery of amino acid permeases to the PM but also participates in their endosomal traffic. We propose a model for exomer where it modulates the recruitment of TGN clathrin adaptors directly or indirectly through the Arf1 function. Moreover, we describe an in vivo competitive relationship between the exomer and AP-1 complexes for the model cargo Chs3. These results highlight a broad role for exomer in regulating protein sorting at the TGN that is complementary to its role as cargo adaptor and present a model to understand the complexity of TGN protein sorting.
Collapse
Affiliation(s)
- Carlos Anton-Plagaro
- Instituto de Biología Funcional y Genómica (IBFG) and Departamento de Microbiología y Genética, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Noelia Sanchez
- Instituto de Biología Funcional y Genómica (IBFG) and Departamento de Microbiología y Genética, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Rosario Valle
- Instituto de Biología Funcional y Genómica (IBFG) and Departamento de Microbiología y Genética, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Jose Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Mara C Duncan
- Cell and Developmental Biology Department, University of Michigan, Ann Arbor, MI, USA
| | - Cesar Roncero
- Instituto de Biología Funcional y Genómica (IBFG) and Departamento de Microbiología y Genética, CSIC-Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
5
|
Zhu L, Sardana R, Jin DK, Emr SD. Calcineurin-dependent regulation of endocytosis by a plasma membrane ubiquitin ligase adaptor, Rcr1. J Cell Biol 2021; 219:151785. [PMID: 32421152 PMCID: PMC7401822 DOI: 10.1083/jcb.201909158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/16/2020] [Accepted: 04/28/2020] [Indexed: 02/04/2023] Open
Abstract
Rsp5, the Nedd4 family member in yeast, is an E3 ubiquitin ligase involved in numerous cellular processes, many of which require Rsp5 to interact with PY-motif containing adaptor proteins. Here, we show that two paralogous transmembrane Rsp5 adaptors, Rcr1 and Rcr2, are sorted to distinct cellular locations: Rcr1 is a plasma membrane (PM) protein, whereas Rcr2 is sorted to the vacuole. Rcr2 is delivered to the vacuole using ubiquitin as a sorting signal. Rcr1 is delivered to the PM by the exomer complex using a newly uncovered PM sorting motif. Further, we show that Rcr1, but not Rcr2, is up-regulated via the calcineurin/Crz1 signaling pathway. Upon exogenous calcium treatment, Rcr1 ubiquitinates and down-regulates the chitin synthase Chs3. We propose that the PM-anchored Rsp5/Rcr1 ubiquitin ligase-adaptor complex can provide an acute response to degrade unwanted proteins under stress conditions, thereby maintaining cell integrity.
Collapse
Affiliation(s)
- Lu Zhu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Richa Sardana
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Daniel K Jin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Scott D Emr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| |
Collapse
|
6
|
Ariño J, Ramos J, Sychrova H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast 2019; 36:177-193. [PMID: 30193006 DOI: 10.1002/yea.3355] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 01/08/2023] Open
Abstract
Maintenance of proper intracellular concentrations of monovalent cations, mainly sodium and potassium, is a requirement for survival of any cell. In the budding yeast Saccharomyces cerevisiae, monovalent cation homeostasis is determined by the active extrusion of protons through the Pma1 H+ -ATPase (reviewed in another chapter of this issue), the influx and efflux of these cations through the plasma membrane transporters (reviewed in this chapter), and the sequestration of toxic cations into the vacuoles. Here, we will describe the structure, function, and regulation of the plasma membrane transporters Trk1, Trk2, Tok1, Nha1, and Ena1, which play a key role in maintaining physiological intracellular concentrations of Na+ , K+ , and H+ , both under normal growth conditions and in response to stress.
Collapse
Affiliation(s)
- Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José Ramos
- Departamento de Microbiología, Universidad de Córdoba, Córdoba, Spain
| | - Hana Sychrova
- Department of Membrane Transport, Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Ramirez-Macias I, Barlow LD, Anton C, Spang A, Roncero C, Dacks JB. Evolutionary cell biology traces the rise of the exomer complex in Fungi from an ancient eukaryotic component. Sci Rep 2018; 8:11154. [PMID: 30042439 PMCID: PMC6057913 DOI: 10.1038/s41598-018-29416-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/11/2018] [Indexed: 11/22/2022] Open
Abstract
Cargo is transported from the trans-Golgi Network to the plasma membrane by adaptor complexes, which are pan-eukaryotic components. However, in yeast, cargo can also be exported by the exomer complex, a heterotetrameric protein complex consisting of two copies of Chs5, and any two members of four paralogous proteins (ChAPs). To understand the larger relevance of exomer, its phylogenetic distribution and function outside of yeast need to be explored. We find that the four ChAP proteins are derived from gene duplications after the divergence of Yarrowia from the remaining Saccharomycotina, with BC8 paralogues (Bch2 and Chs6) being more diverged relative to the BB8 paralogues (Bch1 and Bud7), suggesting neofunctionalization. Outside Ascomycota, a single preduplicate ChAP is present in nearly all Fungi and in diverse eukaryotes, but has been repeatedly lost. Chs5, however, is a fungal specific feature, appearing coincidentally with the loss of AP-4. In contrast, the ChAP protein is a wide-spread, yet uncharacterized, membrane-trafficking component, adding one more piece to the increasingly complex machinery deduced as being present in our ancient eukaryotic ancestor.
Collapse
Affiliation(s)
- Inmaculada Ramirez-Macias
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lael D Barlow
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Carlos Anton
- Instituto de Biología Funcional y Genómica (IBFG) and Departamento de Microbiología y Genética, CSIC-Universidad de Salamanca, 37007, Salamanca, Spain
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland
| | - Cesar Roncero
- Instituto de Biología Funcional y Genómica (IBFG) and Departamento de Microbiología y Genética, CSIC-Universidad de Salamanca, 37007, Salamanca, Spain
| | - Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
The Functional Specialization of Exomer as a Cargo Adaptor During the Evolution of Fungi. Genetics 2018; 208:1483-1498. [PMID: 29437703 DOI: 10.1534/genetics.118.300767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/31/2018] [Indexed: 11/18/2022] Open
Abstract
Yeast exomer is a heterotetrameric complex that is assembled at the trans-Golgi network, which is required for the delivery of a distinct set of proteins to the plasma membrane using ChAPs (Chs5-Arf1 binding proteins) Chs6 and Bch2 as dedicated cargo adaptors. However, our results show a significant functional divergence between them, suggesting an evolutionary specialization among the ChAPs. Moreover, the characterization of exomer mutants in several fungi indicates that exomer's function as a cargo adaptor is a late evolutionary acquisition associated with several gene duplications of the fungal ChAPs ancestor. Initial gene duplication led to the formation of the two ChAPs families, Chs6 and Bch1, in the Saccaromycotina group, which have remained functionally redundant based on the characterization of Kluyveromyces lactis mutants. The whole-genome duplication that occurred within the Saccharomyces genus facilitated a further divergence, which allowed Chs6/Bch2 and Bch1/Bud7 pairs to become specialized for specific cellular functions. We also show that the behavior of S. cerevisiae Chs3 as an exomer cargo is associated with the presence of specific cytosolic domains in this protein, which favor its interaction with exomer and AP-1 complexes. However, these domains are not conserved in the Chs3 proteins of other fungi, suggesting that they arose late in the evolution of fungi associated with the specialization of ChAPs as cargo adaptors.
Collapse
|