1
|
Wulffelé J, Maity A, Ayala I, Gambarelli S, Brutscher B, Bourgeois D. Light-Induced Conformational Heterogeneity Induces Positive Photoswitching in Photoconvertible Fluorescent Proteins of the EosFP Family. J Am Chem Soc 2025; 147:10357-10368. [PMID: 40085482 DOI: 10.1021/jacs.4c17311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Green-to-red photoconvertible fluorescent proteins (PCFPs) of the EosFP family are commonly used in ensemble pulse-chase and single-molecule localization or tracking approaches. However, these fluorescent proteins exhibit highly complex photophysical behaviors. In the green-form, recent NMR experiments revealed that mEos4b and other PCFP variants exist in two different conformational states at thermal equilibrium, which limits their effective photoconversion efficiency. Here, we investigate the conformational heterogeneity of mEos4b in the photoconverted red-form, employing a combination of solution NMR, UV-vis spectroscopy and fluorescence imaging. Only a single red population of mEos4b is observed at thermal equilibrium. However, a second population emerges under illumination with 405 or 488 nm light, which slowly decays in the dark or can be swiftly reverted under 561 nm light. This second population manifests itself through a pH-dependent positive photoswitching mechanism that adds to the already characterized negative photoswitching assigned to cis-trans isomerization of the chromophore. Our data indicate that positive photoswitching, instead, results from the light-induced formation of a second fluorescent state with a cis configuration of the chromophore that exhibits a substantially increased pKa. Such a mechanism, suggested to result from rewiring of the H-bonding network around the first amino acid of the chromophore, adds to the panoply of switching scenarios observed in fluorescent proteins. It bears consequences for the spectroscopic characterization of PCFPs, reduces their apparent brightness and generates short-lived off-times perturbing single-molecule localization microscopy applications.
Collapse
Affiliation(s)
- Jip Wulffelé
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, Grenoble, Cedex 9 38044, France
| | - Arijit Maity
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, Grenoble, Cedex 9 38044, France
| | - Isabel Ayala
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, Grenoble, Cedex 9 38044, France
| | - Serge Gambarelli
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble F-38000, France
| | - Bernhard Brutscher
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, Grenoble, Cedex 9 38044, France
| | - Dominique Bourgeois
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, Grenoble, Cedex 9 38044, France
| |
Collapse
|
2
|
Cooperman B, McMurray M. Roles for the canonical polarity machinery in the de novo establishment of polarity in budding yeast spores. Mol Biol Cell 2025; 36:ar28. [PMID: 39841544 PMCID: PMC11974964 DOI: 10.1091/mbc.e24-07-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
The yeast Saccharomyces cerevisiae buds at sites predetermined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a predetermined polarity site drives initial polarized morphogenesis independent of mating partner location. Spore membranes are made de novo so existing cortical landmarks were unknown, as were the mechanisms by which the spore polarity site is made and how it works. We find that the landmark canonically required for distal budding, Bud8, stably marks the spore polarity site along with Bud5, a GEF for the GTPase Rsr1 that canonically links cortical landmarks to the conserved Cdc42 polarity machinery. Cdc42 and other GTPase regulators arrive at the site during its biogenesis, after spore membrane closure but apparently at the site where membrane synthesis began, and then these factors leave, pointing to the presence of discrete phases of maturation. Filamentous actin may be required for initial establishment of the site, but thereafter Bud8 accumulates independent of actin filaments. These results suggest a distinct polarization mechanism that may provide insights into gamete polarization in other organisms.
Collapse
Affiliation(s)
- Benjamin Cooperman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
3
|
Cooperman B, McMurray M. Roles for the canonical polarity machinery in the de novo establishment of polarity in budding yeast spores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.29.610423. [PMID: 39257763 PMCID: PMC11383998 DOI: 10.1101/2024.08.29.610423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The yeast Saccharomyces cerevisiae buds at sites pre-determined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a pre-determined polarity site drives initial polarized morphogenesis independent of mating partner location. Spore membranes are made de novo so existing cortical landmarks were unknown, as were the mechanisms by which the spore polarity site is made and how it works. We find that the landmark canonically required for distal budding, Bud8, stably marks the spore polarity site along with Bud5, a GEF for the GTPase Rsr1 that canonically links cortical landmarks to the conserved Cdc42 polarity machinery. Cdc42 and other GTPase regulators arrive at the site during its biogenesis, after spore membrane closure but apparently at the site where membrane synthesis began, and then these factors leave, pointing to the presence of discrete phases of maturation. Filamentous actin may be required for initial establishment of the site, but thereafter Bud8 accumulates independent of actin filaments. These results suggest a distinct polarization mechanism that may provide insights into gamete polarization in other organisms.
Collapse
Affiliation(s)
- Benjamin Cooperman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
4
|
Fritz C, Reimann TM, Adler J, Knab J, Schulmeister S, Kriechbaum C, Müller S, Parmryd I, Kost B. Plasma membrane and cytoplasmic compartmentalization: A dynamic structural framework required for pollen tube tip growth. PLANT PHYSIOLOGY 2024; 197:kiae558. [PMID: 39446406 DOI: 10.1093/plphys/kiae558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/28/2024] [Indexed: 12/24/2024]
Abstract
Rapid, unidirectional pollen tube tip growth is essential for fertilization and widely employed as a model of polar cell expansion, a process crucial for plant morphogenesis. Different proteins and lipids with key functions in the control of polar cell expansion are associated with distinct domains of the plasma membrane (PM) at the pollen tube tip. These domains need to be dynamically maintained during tip growth, which depends on massive secretory and endocytic membrane trafficking. Very little is currently known about the molecular and cellular mechanisms responsible for the compartmentalization of the pollen tube PM. To provide a reliable structural framework for the further characterization of these mechanisms, an integrated quantitative map was compiled of the relative positions in normally growing Nicotiana tabacum (tobacco) pollen tubes of PM domains (i) enriched in key signaling proteins or lipids, (ii) displaying high membrane order, or (iii) in contact with cytoplasmic structures playing important roles in apical membrane trafficking. Previously identified secretory and endocytic PM domains were also included in this map. Internalization of regulatory proteins or lipids associated with PM regions overlapping with the lateral endocytic domain was assessed based on brefeldin A treatment. These analyses revealed remarkable aspects of the structural organization of tobacco pollen tube tips, which (i) enhance our understanding of cellular and regulatory processes underlying tip growth and (ii) highlight important areas of future research.
Collapse
Affiliation(s)
- Carolin Fritz
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Theresa Maria Reimann
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jeremy Adler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Knab
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sylwia Schulmeister
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Choy Kriechbaum
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sabine Müller
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Benedikt Kost
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Pan X, Pérez-Henríquez P, Van Norman JM, Yang Z. Membrane nanodomains: Dynamic nanobuilding blocks of polarized cell growth. PLANT PHYSIOLOGY 2023; 193:83-97. [PMID: 37194569 DOI: 10.1093/plphys/kiad288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Cell polarity is intimately linked to numerous biological processes, such as oriented plant cell division, particular asymmetric division, cell differentiation, cell and tissue morphogenesis, and transport of hormones and nutrients. Cell polarity is typically initiated by a polarizing cue that regulates the spatiotemporal dynamic of polarity molecules, leading to the establishment and maintenance of polar domains at the plasma membrane. Despite considerable progress in identifying key polarity regulators in plants, the molecular and cellular mechanisms underlying cell polarity formation have yet to be fully elucidated. Recent work suggests a critical role for membrane protein/lipid nanodomains in polarized morphogenesis in plants. One outstanding question is how the spatiotemporal dynamics of signaling nanodomains are controlled to achieve robust cell polarization. In this review, we first summarize the current state of knowledge on potential regulatory mechanisms of nanodomain dynamics, with a special focus on Rho-like GTPases from plants. We then discuss the pavement cell system as an example of how cells may integrate multiple signals and nanodomain-involved feedback mechanisms to achieve robust polarity. A mechanistic understanding of nanodomains' roles in plant cell polarity is still in the early stages and will remain an exciting area for future investigations.
Collapse
Affiliation(s)
- Xue Pan
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON M1C 1A4, Canada
| | - Patricio Pérez-Henríquez
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA
| | - Jaimie M Van Norman
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province 518055, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, China
| |
Collapse
|
6
|
Sukumar M, DeFlorio R, Pai CY, Stone DE. A member of the claudin superfamily influences formation of the front domain in pheromone-responding yeast cells. J Cell Sci 2023; 136:286256. [PMID: 36601911 DOI: 10.1242/jcs.260048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Cell polarization in response to chemical gradients is important in development and homeostasis across eukaryota. Chemosensing cells orient toward or away from gradient sources by polarizing along a front-rear axis. Using the mating response of budding yeast as a model of chemotropic cell polarization, we found that Dcv1, a member of the claudin superfamily, influences front-rear polarity. Although Dcv1 localized uniformly on the plasma membrane (PM) of vegetative cells, it was confined to the rear of cells responding to pheromone, away from the pheromone receptor. dcv1Δ conferred mislocalization of sensory, polarity and trafficking proteins, as well as PM lipids. These phenotypes correlated with defects in pheromone-gradient tracking and cell fusion. We propose that Dcv1 helps demarcate the mating-specific front domain primarily by restricting PM lipid distribution.
Collapse
Affiliation(s)
- Madhushalini Sukumar
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Reagan DeFlorio
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chih-Yu Pai
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - David E Stone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
7
|
Structural determinants of REMORIN nanodomain formation in anionic membranes. Biophys J 2022:S0006-3495(22)03964-9. [PMID: 36582138 DOI: 10.1016/j.bpj.2022.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Remorins are a family of multigenic plasma membrane phosphoproteins involved in biotic and abiotic plant interaction mechanisms, partnering in molecular signaling cascades. Signaling activity of remorins depends on their phosphorylation states and subsequent clustering into nanosized membrane domains. The presence of a coiled-coil domain and a C-terminal domain is crucial to anchor remorins to negatively charged membrane domains; however, the exact role of the N-terminal intrinsically disordered domain (IDD) on protein clustering and lipid interactions is largely unknown. Here, we combine chemical biology and imaging approaches to study the partitioning of group 1 remorin into anionic model membranes mimicking the inner leaflet of the plant plasma membrane. Using reconstituted membranes containing a mix of saturated and unsaturated phosphatidylcholine, phosphatidylinositol phosphates, and sterol, we investigate the clustering of remorins to the membrane and monitor the formation of nanosized membrane domains. REM1.3 promoted membrane nanodomain organization on the exposed external leaflet of both spherical lipid vesicles and flat supported lipid bilayers. Our results reveal that REM1.3 drives a mechanism allowing lipid reorganization, leading to the formation of remorin-enriched nanodomains. Phosphorylation of the N-terminal IDD by the calcium protein kinase CPK3 influences this clustering and can lead to the formation of smaller and more disperse domains. Our work reveals the phosphate-dependent involvement of the N-terminal IDD in the remorin-membrane interaction process by driving structural rearrangements at lipid-water interfaces.
Collapse
|
8
|
Miyata Y, Yamada K, Nagata S, Segawa K. Two types of type IV P-type ATPases independently re-establish the asymmetrical distribution of phosphatidylserine in plasma membranes. J Biol Chem 2022; 298:102527. [PMID: 36162506 PMCID: PMC9597894 DOI: 10.1016/j.jbc.2022.102527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Phospholipids are asymmetrically distributed between the lipid bilayer of plasma membranes in which phosphatidylserine (PtdSer) is confined to the inner leaflet. ATP11A and ATP11C, type IV P-Type ATPases in plasma membranes, flip PtdSer from the outer to the inner leaflet, but involvement of other P4-ATPases is unclear. We herein demonstrated that once PtdSer was exposed on the cell surface of ATP11A−/−ATP11C−/− mouse T cell line (W3), its internalization to the inner leaflet of plasma membranes was negligible at 15 °C. However, ATP11A−/−ATP11C−/− cells internalized the exposed PtdSer at 37 °C, a temperature at which trafficking of intracellular membranes was active. In addition to ATP11A and 11C, W3 cells expressed ATP8A1, 8B2, 8B4, 9A, 9B, and 11B, with ATP8A1 and ATP11B being present at recycling endosomes. Cells deficient in four P4-ATPases (ATP8A1, 11A, 11B, and 11C) (QKO) did not constitutively expose PtdSer on the cell surface but lost the ability to re-establish PtdSer asymmetry within 1 hour, even at 37 °C. The expression of ATP11A or ATP11C conferred QKO cells with the ability to rapidly re-establish PtdSer asymmetry at 15 °C and 37 °C, while cells expressing ATP8A1 or ATP11B required a temperature of 37 °C to achieve this function, and a dynamin inhibitor blocked this process. These results revealed that mammalian cells are equipped with two independent mechanisms to re-establish its asymmetry: the first is a rapid process involving plasma membrane flippases, ATP11A and ATP11C, while the other is mediated by ATP8A1 and ATP11B, which require an endocytosis process.
Collapse
Affiliation(s)
- Yugo Miyata
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kyoko Yamada
- Laboratory of Biochemistry & Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| | - Katsumori Segawa
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan; Laboratory of Biochemistry & Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
9
|
Thomas FB, Omnus DJ, Bader JM, Chung GH, Kono N, Stefan CJ. Tricalbin proteins regulate plasma membrane phospholipid homeostasis. Life Sci Alliance 2022; 5:5/8/e202201430. [PMID: 35440494 PMCID: PMC9018018 DOI: 10.26508/lsa.202201430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
The evolutionarily conserved extended synaptotagmin (E-Syt) proteins are calcium-activated lipid transfer proteins that function at contacts between the ER and plasma membrane (ER-PM contacts). However, roles of the E-Syt family members in PM lipid organisation remain incomplete. Among the E-Syt family, the yeast tricalbin (Tcb) proteins are essential for PM integrity upon heat stress, but it is not known how they contribute to PM maintenance. Using quantitative lipidomics and microscopy, we find that the Tcb proteins regulate phosphatidylserine homeostasis at the PM. Moreover, upon heat-induced membrane stress, Tcb3 co-localises with the PM protein Sfk1 that is implicated in PM phospholipid asymmetry and integrity. The Tcb proteins also control the PM targeting of the known phosphatidylserine effector Pkc1 upon heat-induced stress. Phosphatidylserine has evolutionarily conserved roles in PM organisation, integrity, and repair. We propose that phospholipid regulation is an ancient essential function of E-Syt family members required for PM integrity.
Collapse
Affiliation(s)
- Ffion B Thomas
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Deike J Omnus
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jakob M Bader
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Gary Hc Chung
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Christopher J Stefan
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
10
|
Bugda Gwilt K, Thiagarajah JR. Membrane Lipids in Epithelial Polarity: Sorting out the PIPs. Front Cell Dev Biol 2022; 10:893960. [PMID: 35712665 PMCID: PMC9197455 DOI: 10.3389/fcell.2022.893960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell polarity in epithelia, is critical for tissue morphogenesis and vectorial transport between the environment and the underlying tissue. Epithelial polarity is defined by the development of distinct plasma membrane domains: the apical membrane interfacing with the exterior lumen compartment, and the basolateral membrane directly contacting the underlying tissue. The de novo generation of polarity is a tightly regulated process, both spatially and temporally, involving changes in the distribution of plasma membrane lipids, localization of apical and basolateral membrane proteins, and vesicular trafficking. Historically, the process of epithelial polarity has been primarily described in relation to the localization and function of protein 'polarity complexes.' However, a critical and foundational role is emerging for plasma membrane lipids, and in particular phosphoinositide species. Here, we broadly review the evidence for a primary role for membrane lipids in the generation of epithelial polarity and highlight key areas requiring further research. We discuss the complex interchange that exists between lipid species and briefly examine how major membrane lipid constituents are generated and intersect with vesicular trafficking to be preferentially localized to different membrane domains with a focus on some of the key protein-enzyme complexes involved in these processes.
Collapse
Affiliation(s)
- Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Laquel P, Testet E, Tuphile K, Cullin C, Fouillen L, Bessoule JJ, Doignon F. Phosphoinositides containing stearic acid are required for interaction between Rho GTPases and the exocyst to control the late steps of polarised exocytosis. Traffic 2021; 23:120-136. [PMID: 34908215 DOI: 10.1111/tra.12829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
Cell polarity is achieved by regulators such as small G proteins, exocyst members and phosphoinositides, with the latter playing a key role when bound to the exocyst proteins Sec3p and Exo70p, and Rho GTPases. This ensures asymmetric growth via the routing of proteins and lipids to the cell surface using actin cables. Previously, using a yeast mutant for a lysophosphatidylinositol acyl transferase encoded by the PSI1 gene, we demonstrated the role of stearic acid in the acyl chain of phosphoinositides in cytoskeletal organisation and secretion. Here, we use a genetic approach to characterise the effect on late steps of the secretory pathway. The constitutive overexpression of PSI1 in mutants affecting kinases involved in the phosphoinositide pathway demonstrated the role of molecular species containing stearic acid in bypassing a lack of phosphatidylinositol-4-phosphate PI(4)P at the plasma membrane, which is essential for the function of the Cdc42p module. Decreasing the levels of stearic acid-containing phosphoinositides modifies the environment of the actors involved in the control of late steps in the secretory pathway. This leads to decreased interactions between Exo70p and Sec3p, with Cdc42p, Rho1p and Rho3p, due to disruption of the GTP/GDP ratio of at least Rho1p and Rho3p GTPases, thereby preventing activation of the exocyst.
Collapse
Affiliation(s)
- P Laquel
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - E Testet
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - K Tuphile
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - C Cullin
- Univ. Bordeaux, CNRS, Laboratoire de Chimie Biologie des Membranes & des Nano-objets, UMR 5248, Pessac, France
| | - L Fouillen
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France.,Metabolome Facility of Bordeaux, Functional Genomics Centre, F-33883 Villenave d'Ornon, France
| | - J J Bessoule
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - F Doignon
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| |
Collapse
|
12
|
Sternberg H, Buriakovsky E, Bloch D, Gutman O, Henis YI, Yalovsky S. Formation of self-organizing functionally distinct Rho of plants domains involves a reduced mobile population. PLANT PHYSIOLOGY 2021; 187:2485-2508. [PMID: 34618086 PMCID: PMC8644358 DOI: 10.1093/plphys/kiab385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Rho family proteins are central to the regulation of cell polarity in eukaryotes. Rho of Plants-Guanyl nucleotide Exchange Factor (ROPGEF) can form self-organizing polar domains following co-expression with an Rho of Plants (ROP) and an ROP GTPase-Activating Protein (ROPGAP). Localization of ROPs in these domains has not been demonstrated, and the mechanisms underlying domain formation and function are not well understood. Here we show that six different ROPs form self-organizing domains when co-expressed with ROPGEF3 and GAP1 in Nicotiana benthamiana or Arabidopsis (Arabidopsis thaliana). Domain formation was associated with ROP-ROPGEF3 association, reduced ROP mobility, as revealed by time-lapse imaging and Fluorescence Recovery After Photobleaching beam size analysis, and was independent of Rho GTP Dissociation Inhibitor mediated recycling. The domain formation depended on the ROPs' activation/inactivation cycles and interaction with anionic lipids via a C-terminal polybasic domain. Coexpression with the microtubule-associated protein ROP effector INTERACTOR OF CONSTITUTIVELY ACTIVE ROP 1 (ICR1) revealed differential function of the ROP domains in the ability to recruit ICR1. Taken together, the results reveal mechanisms underlying self-organizing ROP domain formation and function.
Collapse
Affiliation(s)
- Hasana Sternberg
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ella Buriakovsky
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daria Bloch
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Orit Gutman
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yoav I Henis
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shaul Yalovsky
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
13
|
Targeting small GTPases and their downstream pathways with intracellular macromolecule binders to define alternative therapeutic strategies in cancer. Biochem Soc Trans 2021; 49:2021-2035. [PMID: 34623375 DOI: 10.1042/bst20201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
The RAS superfamily of small GTPases regulates major physiological cellular processes. Mutation or deregulation of these small GTPases, their regulators and/or their effectors are associated with many diseases including cancer. Hence, targeting these classes of proteins is an important therapeutic strategy in cancer. This has been recently achieved with the approval of the first KRASG12C covalent inhibitors for the clinic. However, many other mutants and small GTPases are still considered as 'undruggable' with small molecule inhibitors because of a lack of well-defined pocket(s) at their surface. Therefore, alternative therapeutic strategies have been developed to target these proteins. In this review, we discuss the use of intracellular antibodies and derivatives - reagents that bind their antigen inside the cells - for the discovery of novel inhibitory mechanisms, targetable features and therapeutic strategies to inhibit small GTPases and their downstream pathways. These reagents are also versatile tools used to better understand the biological mechanisms regulated by small GTPases and to accelerate the drug discovery process.
Collapse
|
14
|
Lenoir G, D'Ambrosio JM, Dieudonné T, Čopič A. Transport Pathways That Contribute to the Cellular Distribution of Phosphatidylserine. Front Cell Dev Biol 2021; 9:737907. [PMID: 34540851 PMCID: PMC8440936 DOI: 10.3389/fcell.2021.737907] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Phosphatidylserine (PS) is a negatively charged phospholipid that displays a highly uneven distribution within cellular membranes, essential for establishment of cell polarity and other processes. In this review, we discuss how combined action of PS biosynthesis enzymes in the endoplasmic reticulum (ER), lipid transfer proteins (LTPs) acting within membrane contact sites (MCS) between the ER and other compartments, and lipid flippases and scramblases that mediate PS flip-flop between membrane leaflets controls the cellular distribution of PS. Enrichment of PS in specific compartments, in particular in the cytosolic leaflet of the plasma membrane (PM), requires input of energy, which can be supplied in the form of ATP or by phosphoinositides. Conversely, coupling between PS synthesis or degradation, PS flip-flop and PS transfer may enable PS transfer by passive flow. Such scenario is best documented by recent work on the formation of autophagosomes. The existence of lateral PS nanodomains, which is well-documented in the case of the PM and postulated for other compartments, can change the steepness or direction of PS gradients between compartments. Improvements in cellular imaging of lipids and membranes, lipidomic analysis of complex cellular samples, reconstitution of cellular lipid transport reactions and high-resolution structural data have greatly increased our understanding of cellular PS homeostasis. Our review also highlights how budding yeast has been instrumental for our understanding of the organization and transport of PS in cells.
Collapse
Affiliation(s)
- Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Juan Martín D'Ambrosio
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Thibaud Dieudonné
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
15
|
Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling? Biochem Soc Trans 2021; 48:2669-2689. [PMID: 33155649 PMCID: PMC7752083 DOI: 10.1042/bst20200467] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The structure-function paradigm has guided investigations into the molecules involved in cellular signalling for decades. The peripheries of this paradigm, however, start to unravel when considering the co-operation between proteins and the membrane in signalling processes. Intrinsically disordered regions hold distinct advantages over folded domains in terms of their binding promiscuity, sensitivity to their particular environment and their ease of modulation through post-translational modifications. Low sequence complexity and bias towards charged residues are also favourable for the multivalent electrostatic interactions that occur at the surfaces of lipid bilayers. This review looks at the principles behind the successful marriage between protein disorder and membranes in addition to the role of this partnership in modifying and regulating signalling in cellular processes. The HVR (hypervariable region) of small GTPases is highlighted as a well-studied example of the nuanced role a short intrinsically disordered region can play in the fine-tuning of signalling pathways.
Collapse
|
16
|
Smokvarska M, Jaillais Y, Martinière A. Function of membrane domains in rho-of-plant signaling. PLANT PHYSIOLOGY 2021; 185:663-681. [PMID: 33793925 PMCID: PMC8133555 DOI: 10.1093/plphys/kiaa082] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 05/18/2023]
Abstract
In a crowded environment, establishing interactions between different molecular partners can take a long time. Biological membranes have solved this issue, as they simultaneously are fluid and possess compartmentalized domains. This nanoscale organization of the membrane is often based on weak, local, and multivalent interactions between lipids and proteins. However, from local interactions at the nanoscale, different functional properties emerge at the higher scale, and these are critical to regulate and integrate cellular signaling. Rho of Plant (ROP) proteins are small guanosine triphosphate hydrolase enzymes (GTPases) involved in hormonal, biotic, and abiotic signaling, as well as fundamental cell biological properties such as polarity, vesicular trafficking, and cytoskeleton dynamics. Association with the membrane is essential for ROP function, as well as their precise targeting within micrometer-sized polar domains (i.e. microdomains) and nanometer-sized clusters (i.e. nanodomains). Here, we review our current knowledge about the formation and the maintenance of the ROP domains in membranes. Furthermore, we propose a model for ROP membrane targeting and discuss how the nanoscale organization of ROPs in membranes could determine signaling parameters like signal specificity, amplification, and integration.
Collapse
Affiliation(s)
- Marija Smokvarska
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, CNRS, INRAE, Université de Lyon, ENS de Lyon, UCB Lyon 1, F-69342 Lyon, France
| | - Alexandre Martinière
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
- Author for communication:
| |
Collapse
|
17
|
Zhang M, Jang H, Nussinov R. PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective. Cancer Res 2021; 81:237-247. [PMID: 33046444 PMCID: PMC7855922 DOI: 10.1158/0008-5472.can-20-0911] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
Ras activates its effectors at the membrane. Active PI3Kα and its associated kinases/phosphatases assemble at membrane regions enriched in signaling lipids. In contrast, the Raf kinase domain extends into the cytoplasm and its assembly is away from the crowded membrane surface. Our structural membrane-centric outlook underscores the spatiotemporal principles of membrane and signaling lipids, which helps clarify PI3Kα activation. Here we focus on mechanisms of activation driven by PI3Kα driver mutations, spotlighting the PI3Kα double (multiple) activating mutations. Single mutations can be potent, but double mutations are stronger: their combination is specific, a single strong driver cannot fully activate PI3K, and two weak drivers may or may not do so. In contrast, two strong drivers may successfully activate PI3K, where one, for example, H1047R, modulates membrane interactions facilitating substrate binding at the active site (km) and the other, for example, E542K and E545K, reduces the transition state barrier (ka), releasing autoinhibition by nSH2. Although mostly unidentified, weak drivers are expected to be common, so we ask here how common double mutations are likely to be and why PI3Kα with double mutations responds effectively to inhibitors. We provide a structural view of hotspot and weak driver mutations in PI3Kα activation, explain their mechanisms, compare these with mechanisms of Raf activation, and point to targeting cell-specific, chromatin-accessible, and parallel (or redundant) pathways to thwart the expected emergence of drug resistance. Collectively, our biophysical outlook delineates activation and highlights the challenges of drug resistance.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
López-Marqués RL. Lipid flippases in polarized growth. Curr Genet 2021; 67:255-262. [PMID: 33388852 DOI: 10.1007/s00294-020-01145-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
Polarized growth is required in eukaryotic cells for processes such as cell division, morphogenesis and motility, which involve conserved and interconnected signalling pathways controlling cell cycle progression, cytoskeleton reorganization and secretory pathway functioning. While many of the factors involved in polarized growth are known, it is not yet clear how they are coordinated both spatially and temporally. Several lines of evidence point to the important role of lipid flippases in polarized growth events. Lipid flippases, which mainly belong to the P4 subfamily of P-type ATPases, are active transporters that move different lipids to the cytosolic side of biological membranes at the expense of ATP. The involvement of the Saccharomyces cerevisiae plasma membrane P4 ATPases Dnf1p and Dnf2p in polarized growth and their activation by kinase phosphorylation were established some years ago. However, these two proteins do not seem to be responsible for the phosphatidylserine internalization required for early recruitment of proteins to the plasma membrane during yeast mating and budding. In a recent publication, we demonstrated that the Golgi-localized P4 ATPase Dnf3p has a preference for PS as a substrate, can reach the plasma membrane in a cell cycle-dependent manner, and is regulated by the same kinases that activate Dnf1p and Dnf2p. This finding solves a long-lasting enigma in the field of lipid flippases and suggests that tight and heavily coordinated spatiotemporal control of lipid translocation at the plasma membrane is important for proper polarized growth.
Collapse
Affiliation(s)
- Rosa Laura López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
19
|
Şahin S, Ünlü C, Trabzon L. Affinity biosensors developed with quantum dots in microfluidic systems. EMERGENT MATERIALS 2021; 4:187-209. [PMID: 33718778 PMCID: PMC7944724 DOI: 10.1007/s42247-021-00195-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/18/2021] [Indexed: 04/14/2023]
Abstract
Quantum dots (QDs) are synthetic semiconductor nanocrystals with unique optical and electronic properties due to their size (2-10 nm) such as high molar absorption coefficient (10-100 times higher than organic dyes), resistance to chemical degradation, and unique optoelectronic properties due to quantum confinement (high quantum yield, emission color change with size). Compared to organic fluorophores, the narrower emission band and wider absorption bands of QDs offer great advantages in cell imaging and biosensor applications. The optoelectronic features of QDs have prompted their intensive use in bioanalytical, biophysical, and biomedical research. As the nanomaterials have been integrated into microfluidic systems, microfluidic technology has accelerated the adaptation of nanomaterials to clinical evaluation together with the advantages such as being more economical, more reproducible, and more susceptible to modification and integration with other technologies. Microfluidic systems serve an important role by being a platform in which QDs are integrated for biosensing applications. As we combine the advantages of QDs and microfluidic technology for biosensing technology, QD-based biosensor integrated with microfluidic systems can be used as an advanced and versatile diagnostic technology in case of pandemic. Specifically, there is an urgent necessity to have reliable and fast detection systems for COVID-19 virus. In this review, affinity-based biosensing mechanisms which are developed with QDs are examined in the domain of microfluidic approach. The combination of microfluidic technology and QD-based affinity biosensors are presented with examples in order to develop a better technological framework of diagnostic for COVID-19 virus.
Collapse
Affiliation(s)
- Sultan Şahin
- Nanosicence and Nanoengineering Department, Istanbul Technical University, Istanbul, Turkey
- Nanotechnology Research and Application Center – ITUnano, Istanbul Technical University, Istanbul, Turkey
- MEMS Research Center, Istanbul Technical University, Istanbul, Turkey
| | - Caner Ünlü
- Nanosicence and Nanoengineering Department, Istanbul Technical University, Istanbul, Turkey
- Nanotechnology Research and Application Center – ITUnano, Istanbul Technical University, Istanbul, Turkey
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Levent Trabzon
- Nanosicence and Nanoengineering Department, Istanbul Technical University, Istanbul, Turkey
- Nanotechnology Research and Application Center – ITUnano, Istanbul Technical University, Istanbul, Turkey
- MEMS Research Center, Istanbul Technical University, Istanbul, Turkey
- Faculty of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
20
|
Smokvarska M, Francis C, Platre MP, Fiche JB, Alcon C, Dumont X, Nacry P, Bayle V, Nollmann M, Maurel C, Jaillais Y, Martiniere A. A Plasma Membrane Nanodomain Ensures Signal Specificity during Osmotic Signaling in Plants. Curr Biol 2020; 30:4654-4664.e4. [PMID: 33035478 DOI: 10.1016/j.cub.2020.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/13/2020] [Accepted: 09/04/2020] [Indexed: 01/09/2023]
Abstract
In the course of their growth and development, plants have to constantly perceive and react to their environment. This is achieved in cells by the coordination of complex combinatorial signaling networks. However, how signal integration and specificity are achieved in this context is unknown. With a focus on the hyperosmotic stimulus, we use live super-resolution light imaging methods to demonstrate that a Rho GTPase, Rho-of-Plant 6 (ROP6), forms stimuli-dependent nanodomains within the plasma membrane (PM). These nanodomains are necessary and sufficient to transduce production of reactive oxygen species (ROS) that act as secondary messengers and trigger several plant adaptive responses to osmotic constraints. Furthermore, osmotic signal triggers interaction between ROP6 and two NADPH oxidases that subsequently generate ROS. ROP6 nanoclustering is also needed for cell surface auxin signaling, but short-time auxin treatment does not induce ROS accumulation. We show that auxin-induced ROP6 nanodomains, unlike osmotically driven ROP6 clusters, do not recruit the NADPH oxidase, RBOHD. Together, our results suggest that Rho GTPase nano-partitioning at the PM ensures signal specificity downstream of independent stimuli.
Collapse
Affiliation(s)
- Marija Smokvarska
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Charbel Francis
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des Plantes, Université Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-69342 Lyon, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, 34090 Montpellier, France
| | - Carine Alcon
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Xavier Dumont
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Philippe Nacry
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Université Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-69342 Lyon, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, 34090 Montpellier, France
| | - Christophe Maurel
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Y Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, F-69342 Lyon, France
| | | |
Collapse
|
21
|
Abstract
While the organization of inanimate systems such as gases or liquids is predominantly thermodynamically driven—a mixture of two gases will tend to mix until they reach equilibrium—biological systems frequently exhibit organization that is far from a well-mixed equilibrium. The anisotropies displayed by cells are evident in some of the dynamic processes that constitute life including cell development, movement, and division. These anisotropies operate at different length-scales, from the meso- to the nanoscale, and are proposed to reflect self-organization, a characteristic of living systems that is becoming accessible to reconstitution from purified components, and thus a more thorough understanding. Here, some examples of self-organization underlying cellular anisotropies at the cellular level are reviewed, with an emphasis on Rho-family GTPases operating at the plasma membrane. Given the technical challenges of studying these dynamic proteins, some of the successful approaches that are being employed to study their self-organization will also be considered.
Collapse
Affiliation(s)
- Derek McCusker
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France; Institute of Biochemistry and Cellular Genetics, UMR 5095, University of Bordeaux and Centre National de la Recherche Scientifique, F-33000 Bordeaux, France
| |
Collapse
|
22
|
Lamas I, Weber N, Martin SG. Activation of Cdc42 GTPase upon CRY2-Induced Cortical Recruitment Is Antagonized by GAPs in Fission Yeast. Cells 2020; 9:E2089. [PMID: 32932721 PMCID: PMC7565336 DOI: 10.3390/cells9092089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
The small GTPase Cdc42 is critical for cell polarization in eukaryotic cells. In rod-shaped fission yeast Schizosaccharomyces pombe cells, active GTP-bound Cdc42 promotes polarized growth at cell poles, while inactive Cdc42-GDP localizes ubiquitously also along cell sides. Zones of Cdc42 activity are maintained by positive feedback amplification involving the formation of a complex between Cdc42-GTP, the scaffold Scd2, and the guanine nucleotide exchange factor (GEF) Scd1, which promotes the activation of more Cdc42. Here, we use the CRY2-CIB1 optogenetic system to recruit and cluster a cytosolic Cdc42 variant at the plasma membrane and show that this leads to its moderate activation also on cell sides. Surprisingly, Scd2, which binds Cdc42-GTP, is still recruited to CRY2-Cdc42 clusters at cell sides in individual deletion of the GEFs Scd1 or Gef1. We show that activated Cdc42 clusters at cell sides are able to recruit Scd1, dependent on the scaffold Scd2. However, Cdc42 activity is not amplified by positive feedback and does not lead to morphogenetic changes, due to antagonistic activity of the GTPase activating protein Rga4. Thus, the cell architecture is robust to moderate activation of Cdc42 at cell sides.
Collapse
Affiliation(s)
| | | | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, 1015 Lausanne, Switzerland; (I.L.); (N.W.)
| |
Collapse
|
23
|
Pan X, Fang L, Liu J, Senay-Aras B, Lin W, Zheng S, Zhang T, Guo J, Manor U, Van Norman J, Chen W, Yang Z. Auxin-induced signaling protein nanoclustering contributes to cell polarity formation. Nat Commun 2020; 11:3914. [PMID: 32764676 PMCID: PMC7410848 DOI: 10.1038/s41467-020-17602-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/05/2020] [Indexed: 11/25/2022] Open
Abstract
Cell polarity is fundamental to the development of both eukaryotes and prokaryotes, yet the mechanisms behind its formation are not well understood. Here we found that, phytohormone auxin-induced, sterol-dependent nanoclustering of cell surface transmembrane receptor kinase 1 (TMK1) is critical for the formation of polarized domains at the plasma membrane (PM) during the morphogenesis of cotyledon pavement cells (PC) in Arabidopsis. Auxin-induced TMK1 nanoclustering stabilizes flotillin1-associated ordered nanodomains, which in turn promote the nanoclustering of ROP6 GTPase that acts downstream of TMK1 to regulate cortical microtubule organization. In turn, cortical microtubules further stabilize TMK1- and flotillin1-containing nanoclusters at the PM. Hence, we propose a new paradigm for polarity formation: A diffusive signal triggers cell polarization by promoting cell surface receptor-mediated nanoclustering of signaling components and cytoskeleton-mediated positive feedback that reinforces these nanodomains into polarized domains.
Collapse
Affiliation(s)
- Xue Pan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Linjing Fang
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jianfeng Liu
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Betul Senay-Aras
- Department of Mathematics, University of California, Riverside, CA, 92521, USA
| | - Wenwei Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Shuan Zheng
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tong Zhang
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jingzhe Guo
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jaimie Van Norman
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, CA, 92521, USA.
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
24
|
Cheng Y, Felix B, Othmer HG. The Roles of Signaling in Cytoskeletal Changes, Random Movement, Direction-Sensing and Polarization of Eukaryotic Cells. Cells 2020; 9:E1437. [PMID: 32531876 PMCID: PMC7348768 DOI: 10.3390/cells9061437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Movement of cells and tissues is essential at various stages during the lifetime of an organism, including morphogenesis in early development, in the immune response to pathogens, and during wound-healing and tissue regeneration. Individual cells are able to move in a variety of microenvironments (MEs) (A glossary of the acronyms used herein is given at the end) by suitably adapting both their shape and how they transmit force to the ME, but how cells translate environmental signals into the forces that shape them and enable them to move is poorly understood. While many of the networks involved in signal detection, transduction and movement have been characterized, how intracellular signals control re-building of the cyctoskeleton to enable movement is not understood. In this review we discuss recent advances in our understanding of signal transduction networks related to direction-sensing and movement, and some of the problems that remain to be solved.
Collapse
Affiliation(s)
- Yougan Cheng
- Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, USA;
| | - Bryan Felix
- School of Mathematics, University of Minnesota, Minneapolis, MN 55445, USA;
| | - Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55445, USA;
| |
Collapse
|
25
|
Abstract
The Rho GTPase Cdc42 is a central regulator of cell polarity in diverse cell types. The activity of Cdc42 is dynamically controlled in time and space to enable distinct polarization events, which generally occur along a single axis in response to spatial cues. Our understanding of the mechanisms underlying Cdc42 polarization has benefited largely from studies of the budding yeast Saccharomyces cerevisiae, a genetically tractable model organism. In budding yeast, Cdc42 activation occurs in two temporal steps in the G1 phase of the cell cycle to establish a proper growth site. Here, we review findings in budding yeast that reveal an intricate crosstalk among polarity proteins for biphasic Cdc42 regulation. The first step of Cdc42 activation may determine the axis of cell polarity, while the second step ensures robust Cdc42 polarization for growth. Biphasic Cdc42 polarization is likely to ensure the proper timing of events including the assembly and recognition of spatial landmarks and stepwise assembly of a new ring of septins, cytoskeletal GTP-binding proteins, at the incipient bud site. Biphasic activation of GTPases has also been observed in mammalian cells, suggesting that biphasic activation could be a general mechanism for signal-responsive cell polarization. Cdc42 activity is necessary for polarity establishment during normal cell division and development, but its activity has also been implicated in the promotion of aging. We also discuss negative polarity signaling and emerging concepts of Cdc42 signaling in cellular aging.
Collapse
Affiliation(s)
- Kristi E Miller
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Present address: Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
26
|
Ghose D, Lew D. Mechanistic insights into actin-driven polarity site movement in yeast. Mol Biol Cell 2020; 31:1085-1102. [PMID: 32186970 PMCID: PMC7346724 DOI: 10.1091/mbc.e20-01-0040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 11/11/2022] Open
Abstract
Directed cell growth or migration are critical for the development and function of many eukaryotic cells. These cells develop a dynamic "front" (also called "polarity site") that can change direction. Polarity establishment involves autocatalytic accumulation of polarity regulators, including the conserved Rho-family GTPase Cdc42, but the mechanisms underlying polarity reorientation remain poorly understood. The tractable model yeast, Saccharomyces cerevisiae, relocates its polarity site when searching for mating partners. Relocation requires polymerized actin, and is thought to involve actin-mediated vesicle traffic to the polarity site. In this study, we provide a quantitative characterization of spontaneous polarity site movement as a search process and use a mechanistic computational model that combines polarity protein biochemical interactions with vesicle trafficking to probe how various processes might affect polarity site movement. Our findings identify two previously documented features of yeast vesicle traffic as being particularly relevant to such movement: tight spatial focusing of exocytosis enhances the directional persistence of movement, and association of Cdc42-directed GTPase-Activating Proteins with secretory vesicles increases the distance moved. Furthermore, we suggest that variation in the rate of exocytosis beyond simple Poisson dynamics may be needed to fully account for the characteristics of polarity site movement in vivo.
Collapse
Affiliation(s)
- Debraj Ghose
- Computational Biology and Bioinformatics, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Daniel Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
27
|
Moran KD, Lew DJ. How Diffusion Impacts Cortical Protein Distribution in Yeasts. Cells 2020; 9:cells9051113. [PMID: 32365827 PMCID: PMC7291136 DOI: 10.3390/cells9051113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Proteins associated with the yeast plasma membrane often accumulate asymmetrically within the plane of the membrane. Asymmetric accumulation is thought to underlie diverse processes, including polarized growth, stress sensing, and aging. Here, we review our evolving understanding of how cells achieve asymmetric distributions of membrane proteins despite the anticipated dissipative effects of diffusion, and highlight recent findings suggesting that differential diffusion is exploited to create, rather than dissipate, asymmetry. We also highlight open questions about diffusion in yeast plasma membranes that remain unsolved.
Collapse
|
28
|
Krahn MP. Phospholipids of the Plasma Membrane - Regulators or Consequence of Cell Polarity? Front Cell Dev Biol 2020; 8:277. [PMID: 32411703 PMCID: PMC7198698 DOI: 10.3389/fcell.2020.00277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cell polarity is a key feature of many eukaryotic cells, including neurons, epithelia, endothelia and asymmetrically dividing stem cells. Apart from the specific localization of proteins to distinct domains of the plasma membrane, most of these cells exhibit an asymmetric distribution of phospholipids within the plasma membrane too. Notably, research over the last years has revealed that many known conserved regulators of apical-basal polarity in epithelial cells are capable of binding to phospholipids, which in turn regulate the localization and to some extent the function of these proteins. Conversely, phospholipid-modifying enzymes are recruited and controlled by polarity regulators, demonstrating an elaborated balance between asymmetrically localized proteins and phospholipids, which are enriched in certain (micro)domains of the plasma membrane. In this review, we will focus on our current understanding of apical-basal polarity and the implication of phospholipids within the plasma membrane during the cell polarization of epithelia and migrating cells.
Collapse
Affiliation(s)
- Michael P. Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
29
|
External signal-mediated polarized growth in fungi. Curr Opin Cell Biol 2019; 62:150-158. [PMID: 31875532 DOI: 10.1016/j.ceb.2019.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
As the majority of fungi are nonmotile, polarized growth in response to an external signal enables them to search for nutrients and mating partners, and hence is crucial for survival and proliferation. Although the mechanisms underlying polarization in response to external signals has commonalities with polarization during mitotic division, during budding, and fission growth, the importance of diverse feedback loops regulating external signal-mediated polarized growth is likely to be distinct and uniquely adapted to a dynamic environment. Here, we highlight recent advances in our understanding of the mechanisms that are crucial for polarity in response to external signals in fungi, with particular focus on the roles of membrane traffic, small GTPases, and lipids, as well as the interplay between cell shape and cell growth.
Collapse
|
30
|
Vaidžiulytė K, Coppey M, Schauer K. Intracellular organization in cell polarity - placing organelles into the polarity loop. J Cell Sci 2019; 132:132/24/jcs230995. [PMID: 31836687 DOI: 10.1242/jcs.230995] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many studies have investigated the processes that support polarity establishment and maintenance in cells. On the one hand, polarity complexes at the cell cortex and their downstream signaling pathways have been assigned as major regulators of polarity. On the other hand, intracellular organelles and their polarized trafficking routes have emerged as important components of polarity. In this Review, we argue that rather than trying to identify the prime 'culprit', now it is time to consider all these players as a collective. We highlight that understanding the intimate coordination between the polarized cell cortex and the intracellular compass that is defined by organelle positioning is essential to capture the concept of polarity. After briefly reviewing how polarity emerges from a dynamic maintenance of cellular asymmetries, we highlight how intracellular organelles and their associated trafficking routes provide diverse feedback for dynamic cell polarity maintenance. We argue that the asymmetric organelle compass is an indispensable element of the polarity network.
Collapse
Affiliation(s)
- Kotryna Vaidžiulytė
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France.,Faculty of Science and Engineering, Sorbonne Université, Paris 75005, France
| | - Mathieu Coppey
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France
| | - Kristine Schauer
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France
| |
Collapse
|
31
|
Platre MP, Bayle V, Armengot L, Bareille J, Marquès-Bueno MDM, Creff A, Maneta-Peyret L, Fiche JB, Nollmann M, Miège C, Moreau P, Martinière A, Jaillais Y. Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science 2019; 364:57-62. [PMID: 30948546 DOI: 10.1126/science.aav9959] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
Rho guanosine triphosphatases (GTPases) are master regulators of cell signaling, but how they are regulated depending on the cellular context is unclear. We found that the phospholipid phosphatidylserine acts as a developmentally controlled lipid rheostat that tunes Rho GTPase signaling in Arabidopsis Live superresolution single-molecule imaging revealed that the protein Rho of Plants 6 (ROP6) is stabilized by phosphatidylserine into plasma membrane nanodomains, which are required for auxin signaling. Our experiments also revealed that the plasma membrane phosphatidylserine content varies during plant root development and that the level of phosphatidylserine modulates the quantity of ROP6 nanoclusters induced by auxin and hence downstream signaling, including regulation of endocytosis and gravitropism. Our work shows that variations in phosphatidylserine levels are a physiological process that may be leveraged to regulate small GTPase signaling during development.
Collapse
Affiliation(s)
- Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Joseph Bareille
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Maria Del Mar Marquès-Bueno
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Audrey Creff
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Lilly Maneta-Peyret
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Univ Montpellier, 34090 Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Univ Montpellier, 34090 Montpellier, France
| | - Christine Miège
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Patrick Moreau
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France.,Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, University of Bordeaux, 33000 Bordeaux, France
| | | | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France.
| |
Collapse
|
32
|
Kono K, Yoshiura S, Fujita I, Okada Y, Shitamukai A, Shibata T, Matsuzaki F. Reconstruction of Par-dependent polarity in apolar cells reveals a dynamic process of cortical polarization. eLife 2019; 8:45559. [PMID: 31172945 PMCID: PMC6555595 DOI: 10.7554/elife.45559] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular polarization is fundamental for various biological processes. The Par network system is conserved for cellular polarization. Its core complex consists of Par3, Par6, and aPKC. However, the general dynamic processes that occur during polarization are not well understood. Here, we reconstructed Par-dependent polarity using non-polarized Drosophila S2 cells expressing all three components endogenously in the cytoplasm. The results indicated that elevated Par3 expression induces cortical localization of the Par-complex at the interphase. Its asymmetric distribution goes through three steps: emergence of cortical dots, development of island-like structures with dynamic amorphous shapes, repeating fusion and fission, and polarized clustering of the islands. Our findings also showed that these islands contain a meshwork of unit-like segments. Furthermore, Par-complex patches resembling Par-islands exist in Drosophila mitotic neuroblasts. Thus, this reconstruction system provides an experimental paradigm to study features of the assembly process and structure of Par-dependent cell-autonomous polarity.
Collapse
Affiliation(s)
- Kalyn Kono
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigeki Yoshiura
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ikumi Fujita
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan.,Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Atsunori Shitamukai
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fumio Matsuzaki
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
33
|
Meca J, Massoni-Laporte A, Martinez D, Sartorel E, Loquet A, Habenstein B, McCusker D. Avidity-driven polarity establishment via multivalent lipid-GTPase module interactions. EMBO J 2018; 38:embj.201899652. [PMID: 30559330 DOI: 10.15252/embj.201899652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Abstract
While Rho GTPases are indispensible regulators of cellular polarity, the mechanisms underlying their anisotropic activation at membranes have been elusive. Using the budding yeast Cdc42 GTPase module, which includes a guanine nucleotide exchange factor (GEF) Cdc24 and the scaffold Bem1, we find that avidity generated via multivalent anionic lipid interactions is a critical mechanistic constituent of polarity establishment. We identify basic cluster (BC) motifs in Bem1 that drive the interaction of the scaffold-GEF complex with anionic lipids at the cell pole. This interaction appears to influence lipid acyl chain ordering, thus regulating membrane rigidity and feedback between Cdc42 and the membrane environment. Sequential mutation of the Bem1 BC motifs, PX domain, and the PH domain of Cdc24 lead to a progressive loss of cellular polarity stemming from defective Cdc42 nanoclustering on the plasma membrane and perturbed signaling. Our work demonstrates the importance of avidity via multivalent anionic lipid interactions in the spatial control of GTPase activation.
Collapse
Affiliation(s)
- Julien Meca
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Aurélie Massoni-Laporte
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Denis Martinez
- CNRS, UMR 5248, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Elodie Sartorel
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Antoine Loquet
- CNRS, UMR 5248, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Birgit Habenstein
- CNRS, UMR 5248, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Derek McCusker
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| |
Collapse
|
34
|
CRIB effector disorder: exquisite function from chaos. Biochem Soc Trans 2018; 46:1289-1302. [PMID: 30154092 DOI: 10.1042/bst20170570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022]
Abstract
The CRIB (Cdc42/Rac interactive binding) family of small G-protein effectors contain significant regions with intrinsic disorder. The G-protein-binding regions are contained within these intrinsically disordered regions. Most CRIB proteins also contain stretches of basic residues associated with their G-protein-binding regions. The basic region (BR) and G-protein-binding region together allow the CRIB effectors to bind to their cognate G-protein via a dock- and coalesce-binding mechanism. The BRs of these proteins take on multiple roles: steering G-protein binding, interacting with elements of the membrane and regulating intramolecular regulatory interactions. The ability of these regions of the CRIBs to undergo multivalent interactions and mediate charge neutralizations equips them with all the properties required to drive liquid-liquid phase separation and therefore to initiate and drive signalosome formation. It is only recently that the structural plasticity in these proteins is being appreciated as the driving force for these vital cellular processes.
Collapse
|