1
|
Nishizawa N, Arai R, Hiranuma K, Toya M, Sato M. CAMSAP2 is required for bridging fiber assembly to ensure mitotic spindle assembly and chromosome segregation in human epithelial Caco-2 cells. PLoS One 2025; 20:e0308150. [PMID: 39787108 PMCID: PMC11717264 DOI: 10.1371/journal.pone.0308150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/15/2024] [Indexed: 01/12/2025] Open
Abstract
In mammalian epithelial cells, cytoplasmic microtubules are mainly non-centrosomal, through the functions of the minus-end binding proteins CAMSAP2 and CAMSAP3. When cells enter mitosis, cytoplasmic microtubules are reorganized into the spindle composed of both centrosomal and non-centrosomal microtubules. The function of the CAMSAP proteins upon spindle assembly remains unknown, as these do not exhibit evident localization to spindle microtubules. Here, we demonstrate that CAMSAP2, but not CAMSAP3, is required for spindle assembly upon mitotic entry. CAMSAP2 knockout (KO) Caco-2 cells showed a delay in mitotic progression, whereas CAMSAP3 KO cells did not. The spindle in CAMSAP2 KO cells was short and displayed a reduced microtubule density, particularly around chromosomes. This indicated a loss of bridging fibers, which are known to assist alignment of sister kinetochores through interaction with kinetochore fibers. Consistent with this, live-cell imaging of CAMSAP2 KO cells captured slow elongation of the anaphase spindle and errors in chromosome segregation. Therefore, we propose that CAMSAP2 ensures efficient reorganization of cytoplasmic microtubules into the mitotic spindle through constructing bridging fibers that assist faithful segregation of sister chromatids.
Collapse
Affiliation(s)
- Naoko Nishizawa
- Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Riku Arai
- Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Koki Hiranuma
- Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Mika Toya
- Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Faculty of Science and Engineering, Global Center for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Masamitsu Sato
- Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Institute for Medical-Oriented Structural Biology, Waseda University, Shinjuku, Tokyo, Japan
| |
Collapse
|
2
|
Kobori M, Abe J, Saito R, Hirai Y. CAMSAP3, a microtubule orientation regulator, plays a vital role in manifesting differentiation-dependent characteristics in keratinocytes. Exp Cell Res 2024; 435:113927. [PMID: 38190868 DOI: 10.1016/j.yexcr.2024.113927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Microtubules constitute pivotal structural elements integral to cellular architecture and physiological functionality. Within the epidermis of the skin, microtubules undergo a noteworthy transition in orientation, shifting from centrosomal to non-centrosomal configurations during the processes of differentiation and stratification. This transition aligns with a discernible increase in the expression of CAMSAP3, a protein that binds to the minus end of microtubules, thereby regulating their orientation. In this study, we identified microtubule-bound CAMSAP3 within HaCaT keratinocytes, revealing an upregulation during the mitotic phase and accumulation at the intercellular bridge during cytokinesis. Building upon this observation, we scrutinized cellular responses upon a tetracycline/doxycycline-inducible CAMSAP3 expression in CAMSAP3-deficient HaCaT cells. Remarkably, CAMSAP3 deficiency induced shifts in microtubule orientation, resulting in cell cycle exit and delayed cytokinesis in a subset of the cells. Furthermore, our inquiry unveiled that CAMSAP3 deficiency adversely impacted the formation and stability of Adherens Junctions and Tight Junctions. In contrast, these perturbations were rectified upon the re-expression of CAMSAP3, underscoring the pivotal role of CAMSAP3 in manifesting differentiation-dependent characteristics in stratified keratinocytes. These observations emphasize the significance of CAMSAP3 in maintaining epidermal homeostasis.
Collapse
Affiliation(s)
- Mako Kobori
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Junya Abe
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Reika Saito
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Yohei Hirai
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, Gakuen-Uegahara, Sanda, 669-1330, Japan.
| |
Collapse
|
3
|
Perrin L, Matic Vignjevic D. The emerging roles of the cytoskeleton in intestinal epithelium homeostasis. Semin Cell Dev Biol 2023:S1084-9521(23)00071-X. [PMID: 36948998 DOI: 10.1016/j.semcdb.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The intestinal epithelium must absorb many nutrients and water while forming a barrier that is impermeable to pathogens present in the external environment. Concurrently to fulfill this dual role, the intestinal epithelium is challenged by a rapid renewal of cells and forces resulting from digestion. Hence, intestinal homeostasis requires precise control of tissue integrity, tissue renewal, cell polarity, and force generation/transmission. In this review, we highlight the contribution of the cell cytoskeleton- actin, microtubules, and intermediate filaments- to intestinal epithelium homeostasis. With a focus on enterocytes, we first discuss the role of these networks in the formation and maintenance of cell-cell and cell-matrix junctions. Then, we cover their role in intracellular trafficking related to the apicobasal polarity of enterocytes. Finally, we report on the cytoskeletal changes that occur during tissue renewal. In conclusion, the importance of the cytoskeleton in maintaining intestinal homeostasis is emerging, and we think this field will keep evolving.
Collapse
Affiliation(s)
- Louisiane Perrin
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
4
|
Tomaz LB, Liu BA, Meroshini M, Ong SLM, Tan EK, Tolwinski NS, Williams CS, Gingras AC, Leushacke M, Dunn NR. MCC is a centrosomal protein that relocalizes to non-centrosomal apical sites during intestinal cell differentiation. J Cell Sci 2022; 135:jcs259272. [PMID: 36217793 PMCID: PMC10658790 DOI: 10.1242/jcs.259272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2022] [Indexed: 11/20/2022] Open
Abstract
The gene mutated in colorectal cancer (MCC) encodes a coiled-coil protein implicated, as its name suggests, in the pathogenesis of hereditary human colon cancer. To date, however, the contributions of MCC to intestinal homeostasis and disease remain unclear. Here, we examine the subcellular localization of MCC, both at the mRNA and protein levels, in the adult intestinal epithelium. Our findings reveal that Mcc transcripts are restricted to proliferating crypt cells, including Lgr5+ stem cells, where the Mcc protein is distinctly associated with the centrosome. Upon intestinal cellular differentiation, Mcc is redeployed to the apical domain of polarized villus cells where non-centrosomal microtubule organizing centers (ncMTOCs) are positioned. Using intestinal organoids, we show that the shuttling of the Mcc protein depends on phosphorylation by casein kinases 1δ and ε, which are critical modulators of WNT signaling. Together, our findings support a role for MCC in establishing and maintaining the cellular architecture of the intestinal epithelium as a component of both the centrosome and ncMTOC.
Collapse
Affiliation(s)
- Lucian B. Tomaz
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Bernard A. Liu
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Meroshini M
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Sheena L. M. Ong
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Ee Kim Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | | | | | - Anne-Claude Gingras
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Marc Leushacke
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| | - N. Ray Dunn
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| |
Collapse
|
5
|
O’Donnell J, Zheng J. Vestibular Hair Cells Require CAMSAP3, a Microtubule Minus-End Regulator, for Formation of Normal Kinocilia. Front Cell Neurosci 2022; 16:876805. [PMID: 35783105 PMCID: PMC9247359 DOI: 10.3389/fncel.2022.876805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Kinocilia are exceptionally long primary sensory cilia located on vestibular hair cells, which are essential for transmitting key signals that contribute to mammalian balance and overall vestibular system function. Kinocilia have a “9+2” microtubule (MT) configuration with nine doublet MTs surrounding two central singlet MTs. This is uncommon as most mammalian primary sensory cilia have a “9+0” configuration, in which the central MT pair is absent. It has yet to be determined what the function of the central MT pair is in kinocilia. Calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) regulates the minus end of MTs and is essential for forming the central MT pair in motile cilia, which have the “9+2” configuration. To explore the role of the central MT pair in kinocilia, we created a conditional knockout model (cKO), Camsap3-cKO, which intended to eliminate CAMSAP3 in limited organs including the inner ear, olfactory bulb, and kidneys. Immunofluorescent staining of vestibular organs demonstrated that CAMSAP3 proteins were significantly reduced in Camsap3-cKO mice and that aged Camsap3-cKO mice had significantly shorter kinocilia than their wildtype littermates. Transmission electron microscopy showed that aged Camsap3-cKO mice were in fact missing that the central MT pair in kinocilia more often than their wildtype counterparts. In the examination of behavior, wildtype and Camsap3-cKO mice performed equally well on a swim assessment, right-reflex test, and evaluation of balance on a rotarod. However, Camsap3-cKO mice showed slightly altered gaits including reduced maximal rate of change of paw area and a smaller paw area in contact with the surface. Although Camsap3-cKO mice had no differences in olfaction from their wildtype counterparts, Camsap3-cKO mice did have kidney dysfunction that deteriorated their health. Thus, CAMSAP3 is important for establishing and/or maintaining the normal structure of kinocilia and kidney function but is not essential for normal olfaction. Our data supports our hypothesis that CAMSAP3 is critical for construction of the central MT pair in kinocilia, and that the central MT pair may be important for building long and stable axonemes in these kinocilia. Whether shorter kinocilia might lead to abnormal vestibular function and altered gaits in older Camsap3-cKO mice requires further investigation.
Collapse
Affiliation(s)
- Josephine O’Donnell
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jing Zheng
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Knowles Hearing Center, Northwestern University, Evanston, IL, United States
- *Correspondence: Jing Zheng,
| |
Collapse
|
6
|
Camargo Ortega G, Götz M. Centrosome heterogeneity in stem cells regulates cell diversity. Trends Cell Biol 2022; 32:707-719. [PMID: 35750615 DOI: 10.1016/j.tcb.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
Stem cells are at the source of creating cellular diversity. Multiple mechanisms, including basic cell biological processes, regulate their fate. The centrosome is at the core of many stem cell functions and recent work highlights the association of distinct proteins at the centrosome in stem cell differentiation. As showcased by a novel centrosome protein regulating neural stem cell differentiation, it is timely to review the heterogeneity of the centrosome at protein and RNA levels and how this impacts their function in stem and progenitor cells. Together with evidence for heterogeneity of other organelles so far considered as similar between cells, we call for exploring the cell type-specific composition of organelles as a way to expand protein function in development with relevance to regenerative medicine.
Collapse
Affiliation(s)
- Germán Camargo Ortega
- Department of Biosystems Science and Engineering, ETH, Zurich, 4058 Basel, Switzerland.
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, 82152 Planegg-Martinsried, Germany; Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, 82152 Planegg-Martinsried, Germany; 4 SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
7
|
Mitsuhata Y, Abe T, Misaki K, Nakajima Y, Kiriya K, Kawasaki M, Kiyonari H, Takeichi M, Toya M, Sato M. Cyst formation in proximal renal tubules caused by dysfunction of the microtubule minus-end regulator CAMSAP3. Sci Rep 2021; 11:5857. [PMID: 33712686 PMCID: PMC7954811 DOI: 10.1038/s41598-021-85416-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Epithelial cells organize an ordered array of non-centrosomal microtubules, the minus ends of which are regulated by CAMSAP3. The role of these microtubules in epithelial functions, however, is poorly understood. Here, we show that the kidneys of mice in which Camsap3 is mutated develop cysts at the proximal convoluted tubules (PCTs). PCTs were severely dilated in the mutant kidneys, and they also exhibited enhanced cell proliferation. In these PCTs, epithelial cells became flattened along with perturbation of microtubule arrays as well as of certain subcellular structures such as interdigitating basal processes. Furthermore, YAP and PIEZO1, which are known as mechanosensitive regulators for cell shaping and proliferation, were activated in these mutant PCT cells. These observations suggest that CAMSAP3-mediated microtubule networks are important for maintaining the proper mechanical properties of PCT cells, and its loss triggers cell deformation and proliferation via activation of mechanosensors, resulting in the dilation of PCTs.
Collapse
Affiliation(s)
- Yuto Mitsuhata
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Kazuyo Misaki
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Yuna Nakajima
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Keita Kiriya
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Miwa Kawasaki
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan.
| | - Mika Toya
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan.
- Major in Bioscience, Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjyuku-ku, Tokyo, 169-8555, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo, 162-8480, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo, 162-8480, Japan
| |
Collapse
|
8
|
Kimura T, Saito H, Kawasaki M, Takeichi M. CAMSAP3 is required for mTORC1-dependent ependymal cell growth and lateral ventricle shaping in mouse brains. Development 2021; 148:dev.195073. [PMID: 33462112 DOI: 10.1242/dev.195073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/06/2021] [Indexed: 01/02/2023]
Abstract
Microtubules (MTs) regulate numerous cellular processes, but their roles in brain morphogenesis are not well known. Here, we show that CAMSAP3, a non-centrosomal microtubule regulator, is important for shaping the lateral ventricles. In differentiating ependymal cells, CAMSAP3 became concentrated at the apical domains, serving to generate MT networks at these sites. Camsap3-mutated mice showed abnormally narrow lateral ventricles, in which excessive stenosis or fusion was induced, leading to a decrease of neural stem cells at the ventricular and subventricular zones. This defect was ascribed at least in part to a failure of neocortical ependymal cells to broaden their apical domain, a process necessary for expanding the ventricular cavities. mTORC1 was required for ependymal cell growth but its activity was downregulated in mutant cells. Lysosomes, which mediate mTORC1 activation, tended to be reduced at the apical regions of the mutant cells, along with disorganized apical MT networks at the corresponding sites. These findings suggest that CAMSAP3 supports mTORC1 signaling required for ependymal cell growth via MT network regulation, and, in turn, shaping of the lateral ventricles.
Collapse
Affiliation(s)
- Toshiya Kimura
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Hiroko Saito
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Miwa Kawasaki
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
9
|
Differentiated Daughter Cells Regulate Stem Cell Proliferation and Fate through Intra-tissue Tension. Cell Stem Cell 2020; 28:436-452.e5. [PMID: 33264636 DOI: 10.1016/j.stem.2020.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/30/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Basal stem cells fuel development, homeostasis, and regeneration of the epidermis. The proliferation and fate decisions of these cells are highly regulated by their microenvironment, including the basement membrane and underlying mesenchymal cells. Basal progenitors give rise to differentiated progeny that generate the epidermal barrier. Here, we present data that differentiated progeny also regulate the proliferation, differentiation, and migration of basal progenitor cells. Using two distinct mouse lines, we found that increasing contractility of differentiated cells resulted in non-cell-autonomous hyperproliferation of stem cells and prevented their commitment to a hair follicle lineage. This increased contractility also impaired movement of basal progenitors during hair placode morphogenesis and diminished migration of melanoblasts. These data suggest that intra-tissue tension regulates stem cell proliferation, fate decisions, and migration and that differentiated epidermal keratinocytes are a component of the stem cell niche that regulates development and homeostasis of the skin.
Collapse
|
10
|
Yang DW, Choi KW. Suppression of Patronin deficiency by altered Hippo signaling in Drosophila organ development. Cell Death Differ 2020; 28:233-250. [PMID: 32737445 DOI: 10.1038/s41418-020-0597-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/26/2023] Open
Abstract
The microtubule network is crucial for cell structure and function. Patronin is a conserved protein involved in protecting the minus end of microtubules. Conversely, Klp10A is a kinesin-like microtubule depolymerase. Here we report the role of Drosophila Patronin and Klp10A for cell survival in developing organs. Loss of Patronin reduces the size of organs by activation of a caspase in imaginal discs. Reduced wing by Patronin RNAi is suppressed by knockdown of Spastin (Spas) but not Katanin 60, suggesting that Patronin is inhibitory to the severing function of Spas at the minus end. Patronin RNAi phenotype is also recovered by overexpressing Death-associated inhibitor of apoptosis 1 (Diap1), a Yorkie target gene. Heterozygote mutations in Hippo pathway genes, including hippo and warts (wts), suppress the Patronin RNAi wing phenotypes. Furthermore, Patronin physically interacts with Merlin and Expanded while reducing their function. Patronin and Klp10A antagonistically regulate their levels. Wing phenotypes of Patronin RNAi are rescued by knockdown of Klp10A, consistent with their antagonistic interaction. Klp10A overexpression also causes organ size reduction that is partially suppressed by Diap1 overexpression or wts heterozygote mutation. Taken together, this study suggests that the antagonistic interaction between Patronin and Klp10A is required for controlling cell survival and organ size by modulating microtubule stability and Hippo components.
Collapse
Affiliation(s)
- Dae-Wook Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
| |
Collapse
|
11
|
CAMSAP3 facilitates basal body polarity and the formation of the central pair of microtubules in motile cilia. Proc Natl Acad Sci U S A 2020; 117:13571-13579. [PMID: 32482850 PMCID: PMC7306751 DOI: 10.1073/pnas.1907335117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cilia are composed of hundreds of proteins whose identities and functions are far from being completely understood. In this study, we determined that calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) plays an important role for the function of motile cilia in multiciliated cells (MCCs). Global knockdown of CAMSAP3 protein expression in mice resulted in defects in ciliary structures, polarity, and synchronized beating in MCCs. These animals also displayed signs and symptoms reminiscent of primary ciliary dyskinesia (PCD), including a mild form of hydrocephalus, subfertility, and impaired mucociliary clearance that leads to hyposmia, anosmia, rhinosinusitis, and otitis media. Functional characterization of CAMSAP3 enriches our understanding of the molecular mechanisms underlying the generation and function of motile cilia in MCCs. Synchronized beating of cilia on multiciliated cells (MCCs) generates a directional flow of mucus across epithelia. This motility requires a “9 + 2” microtubule (MT) configuration in axonemes and the unidirectional array of basal bodies of cilia on the MCCs. However, it is not fully understood what components are needed for central MT-pair assembly as they are not continuous with basal bodies in contrast to the nine outer MT doublets. In this study, we discovered that a homozygous knockdown mouse model for MT minus-end regulator calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), Camsap3tm1a/tm1a, exhibited multiple phenotypes, some of which are typical of primary ciliary dyskinesia (PCD), a condition caused by motile cilia defects. Anatomical examination of Camsap3tm1a/tm1a mice revealed severe nasal airway blockage and abnormal ciliary morphologies in nasal MCCs. MCCs from different tissues exhibited defective synchronized beating and ineffective generation of directional flow likely underlying the PCD-like phenotypes. In normal mice, CAMSAP3 localized to the base of axonemes and at the basal bodies in MCCs. However, in Camsap3tm1a/tm1a, MCCs lacked CAMSAP3 at the ciliary base. Importantly, the central MT pairs were missing in the majority of cilia, and the polarity of the basal bodies was disorganized. These phenotypes were further confirmed in MCCs of Xenopus embryos when CAMSAP3 expression was knocked down by morpholino injection. Taken together, we identified CAMSAP3 as being important for the formation of central MT pairs, proper orientation of basal bodies, and synchronized beating of motile cilia.
Collapse
|
12
|
Generation and regulation of microtubule network asymmetry to drive cell polarity. Curr Opin Cell Biol 2019; 62:86-95. [PMID: 31739264 DOI: 10.1016/j.ceb.2019.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 01/19/2023]
Abstract
Microtubules control cell architecture by serving as a scaffold for intracellular transport, signaling, and organelle positioning. Microtubules are intrinsically polarized, and their orientation, density, and post-translational modifications both respond and contribute to cell polarity. Animal cells that can rapidly reorient their polarity axis, such as fibroblasts, immune cells, and cancer cells, contain radially organized microtubule arrays anchored at the centrosome and the Golgi apparatus, whereas stably polarized cells often acquire non-centrosomal microtubule networks attached to the cell cortex, nucleus, or other structures. Microtubule density, longevity, and post-translational modifications strongly depend on the dynamics of their plus ends. Factors controlling microtubule plus-end dynamics are often part of cortical assemblies that integrate cytoskeletal organization, cell adhesion, and secretion and are subject to microtubule-dependent feedback regulation. Finally, microtubules can mechanically contribute to cell asymmetry by promoting cell elongation, a property that might be important for cells with dense microtubule arrays growing in soft environments.
Collapse
|