1
|
Collins BM, Cullen PJ. Separation of powers: A key feature underlying the neuroprotective role of Retromer in age-related neurodegenerative disease? Curr Opin Cell Biol 2025; 94:102516. [PMID: 40253888 DOI: 10.1016/j.ceb.2025.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
The retromer complex was discovered in Saccharomyces cerevisiae as a multiprotein, pentameric assembly essential for recycling of integral membrane cargo proteins through the endosomal network [1,2]. We now understand how retromer is assembled, its membrane architecture, and how it selects proteins for recycling [3-6]. Conserved across eukaryotes, analyses have revealed retromer's role in organism development, and homeostasis and has linked retromer defects with age-related Alzheimer's disease and Parkinson's disease and other neurological disorders [3,5,7]. Indeed, stabilizing retromer function is now actively considered a therapeutic strategy [8]. Here, we reflect on its structural and functional evolution rather than overviewing retromer biology (see, e.g. [5,7]). Specifically, we clarify the organization of the human retromer to provide greater focus for future research, especially within the context of retromer's function in neuroprotection.
Collapse
Affiliation(s)
- Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Queensland, 4072, Australia.
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
2
|
Jian L, Wang B, Gao Y, Xue Y, Guan Y, Qu Y, Liu K, Yan L, Li S, Luo H. Rab8a and Vps35 influence intracellular transport of vitamin E via α-Tocopherol transport protein in hepatocytes. Int J Biol Macromol 2025; 311:143021. [PMID: 40258550 DOI: 10.1016/j.ijbiomac.2025.143021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
Of all the forms of vitamin E, α-tocopherol is distinguished as the primary ligand for the α-tocopherol transport protein (α-TTP), a pivotal factor in its secretion into the bloodstream and subsequent systemic distribution. Nevertheless, the intricate molecular mechanisms governing the transport of α-tocopherol via α-TTP have yet to be fully elucidated. In this research, Co-Immunoprecipitation (Co-IP)/LC-MS and His-pull-down assays were utilized to identify proteins interacting with α-TTP. Immunofluorescence staining and Co-IP/Western blotting further confirmed these interactions. Meanwhile, RNA-seq was utilized to discover α-tocopherol-related genes. Genes knockdown was conducted to examine the influence of related genes on vitamin E transport. The concentrations of intracellular and extracellular vitamin E were quantified using LC-MS and specific assay kits. Immunofluorescence staining showed colocalization of Rab8a, SNX3, SNX5, SNX17, and SNX27 with α-TTP, whereas Co-IP/Western blot analysis indicated a specific interaction among Vps35, Rab8a and α-TTP. Notably, the knockdown of Rab8a, SNX5, SNX17, and SNX27 individually influenced the vitamin E content both intracellularly and extracellularly, whereas knockdown of SNX3 did not show such effects in hepatocytes. This research highlights the crucial roles of Rab8a and Vps35 in α-tocopherol's intracellular transport probably by direct interaction with α-TTP, and their association with Retromer-SNX27, Commander-SNX17, and ESCPE1 complexes.
Collapse
Affiliation(s)
- Luyang Jian
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bing Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuefeng Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Xue
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongjuan Guan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanghua Qu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kun Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Leyan Yan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuanghong Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Chen KE, Tillu VA, Gopaldass N, Chowdhury SR, Leneva N, Kovtun O, Ruan J, Guo Q, Ariotti N, Mayer A, Collins BM. Molecular basis for the assembly of the Vps5-Vps17 SNX-BAR proteins with Retromer. Nat Commun 2025; 16:3568. [PMID: 40234461 PMCID: PMC12000511 DOI: 10.1038/s41467-025-58846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Retromer mediates endosomal retrieval of transmembrane proteins in all eukaryotes and was first discovered in yeast in complex with the Vps5 and Vps17 sorting nexins (SNXs). Cryoelectron tomography (cryoET) studies of Retromer-Vps5 revealed a pseudo-helical coat on membrane tubules where dimers of the Vps26 subunit bind Vps5 membrane-proximal domains. However, the Vps29 subunit is also required for Vps5-Vps17 association despite being far from the membrane. Here, we show that Vps5 binds both Vps29 and Vps35 subunits through its unstructured N-terminal domain. A Pro-Leu (PL) motif in Vps5 binds Vps29 and is required for association with Retromer on membrane tubules in vitro, and for the proper recycling of the Vps10 cargo in Saccharomyces cerevisiae. CryoET of Retromer tubules with Vps5-Vps17 heterodimers show a similar architecture to the coat with Vps5-Vps5 homodimers, however, the spatial relationship between Retromer units is highly restricted, likely due to more limited orientations for docking. These results provide mechanistic insights into how Retromer and SNX-BAR association has evolved across species.
Collapse
Affiliation(s)
- Kai-En Chen
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia
| | - Vikas A Tillu
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia
| | - Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Natalya Leneva
- Research Group Molecular Mechanism of Membrane Trafficking, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Oleksiy Kovtun
- Research Group Molecular Mechanism of Membrane Trafficking, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Juanfang Ruan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Qian Guo
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Brett M Collins
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
4
|
Chandra M, Kendall AK, Ford MGJ, Jackson LP. VARP binds SNX27 to promote endosomal supercomplex formation on membranes. SCIENCE ADVANCES 2025; 11:eadr9340. [PMID: 39937906 PMCID: PMC11817943 DOI: 10.1126/sciadv.adr9340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/09/2025] [Indexed: 02/14/2025]
Abstract
Endosomes are vital cellular hubs for sorting protein cargoes. Retromer (VPS26/VPS35/VPS29) binds multiple sorting nexin (SNX) proteins on endosomal membranes, but assembly mechanisms of metazoan SNX/Retromer complexes remain elusive. We combine biochemical and biophysical approaches with AlphaFold modeling to identify a previously unidentified direct interaction between SNX27 and VARP. A full biochemical reconstitution system using purified proteins systematically tests how and when coats are recruited to membranes to generate tubules. We demonstrate and measure how specific combinations of Retromer with SNX27, ESCPE-1 (SNX2/SNX6), or both complexes, remodel membranes containing physiological cargo and phospholipids. SNX27, alone and with Retromer, remodels membranes with PI(3)P and PDZbm cargo. ESCPE-1 deforms membranes with bis-phosphoinositides and CI-MPR cargo but surprisingly does not recruit Retromer. VARP co-immunoprecipitates all coat components in cells and is required to reconstitute a proposed endosomal "supercomplex" (SNX27, ESCPE-1, and Retromer) in vitro. These data suggest VARP regulates metazoan endosomal coat assembly to promote cargo sorting out of endosomes.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Marijn G. J. Ford
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Singla A, Boesch DJ, Fung HYJ, Ngoka C, Enriquez AS, Song R, Kramer DA, Han Y, Banarer E, Lemoff A, Juneja P, Billadeau DD, Bai X, Chen Z, Turer EE, Burstein E, Chen B. Structural basis for Retriever-SNX17 assembly and endosomal sorting. Nat Commun 2024; 15:10193. [PMID: 39587083 PMCID: PMC11589680 DOI: 10.1038/s41467-024-54583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
During endosomal recycling, Sorting Nexin 17 (SNX17) facilitates the transport of numerous membrane cargo proteins by tethering them to the Retriever complex. Despite its importance, the mechanisms underlying this interaction have remained elusive. Here, we provide biochemical, structural, cellular, and proteomic analyses of the SNX17-Retriever interaction. Our data reveal that SNX17 adopts an autoinhibited conformation in the basal state, with its FERM domain sequestering its C-terminal tail. The binding of cargo proteins to the FERM domain displaces the C-terminal tail through direct competition. The released tail engages with Retriever by binding to a highly conserved interface between its VPS35L and VPS26C subunits, as revealed by cryogenic electron microscopy (cryo-EM). Disrupting this interface impairs the Retriever-SNX17 interaction, subsequently affecting the recycling of SNX17-dependent cargoes and altering the composition of the plasma membrane proteome. Intriguingly, the SNX17-binding pocket on Retriever can be utilized by other ligands containing a consensus acidic C-terminal tail motif. Together, our findings uncover a mechanism underlying endosomal trafficking of critical cargo proteins and reveal how Retriever can potentially engage with other regulatory factors or be exploited by pathogens.
Collapse
Affiliation(s)
- Amika Singla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Daniel J Boesch
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA
| | - Ho Yee Joyce Fung
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Chigozie Ngoka
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA
| | - Avery S Enriquez
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA
| | - Ran Song
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Esther Banarer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75230, USA
| | - Puneet Juneja
- Cryo-EM facility, Office of Biotechnology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, OR, 97124, USA
| | - Daniel D Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaochen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Emre E Turer
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA.
- On sabbatical leave at Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Cheng S, Long Y, Zhang X, Liu B, Song S, Li G, Hu Y, Du L, Wang Q, Jiang J, Xiong G. The Sorting and Transport of the Cargo Protein CcSnc1 by the Retromer Complex Regulate the Growth, Development, and Pathogenicity of Corynespora cassiicola. J Fungi (Basel) 2024; 10:714. [PMID: 39452666 PMCID: PMC11508248 DOI: 10.3390/jof10100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
In eukaryotes, the retromer complex is critical for the transport of cargo proteins from endosomes to the trans-Golgi network (TGN). Despite its importance, there is a lack of research on the retromer-mediated transport of cargo proteins regulating the growth, development, and pathogenicity of filamentous fungi. In the present study, transcriptome analysis showed that the expression levels of the retromer complex (CcVPS35, CcVPS29 and CcVPS26) were significantly elevated during the early stages of Corynespora cassiicola invasion. Gene knockout and complementation analyses further highlighted the critical role of the retromer complex in C. cassiicola infection. Subcellular localization analysis showed that the retromer complex was mainly localized to the vacuolar membrane and partially to endosomes and the TGN. Further research found that the retromer core subunit CcVps35 can interact with the cargo protein CcSnc1. Subcellular localization showed that CcSnc1 is mainly located at the hyphal tip and partially in endosomes and the Golgi apparatus. Deletion of CcVPS35 resulted in the missorting of CcSnc1 into the vacuolar degradation pathway, indicating that the retromer can sort CcSnc1 from endosomes and transport it to the TGN. Additionally, gene knockout and complementation analyses demonstrated that CcSnc1 is critical for the growth, development, and pathogenicity of C. cassiicola. In summary, the vesicular transport pathway involving the retromer complex regulates the sorting and transport of the cargo protein CcSnc1, which is important for the growth, development and pathogenicity of C. cassiicola.
Collapse
Affiliation(s)
- Shuyuan Cheng
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yunfei Long
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiaoyang Zhang
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China;
| | - Bing Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuilin Song
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Genghua Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Yuzhuan Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Lei Du
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Quanxing Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Junxi Jiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guihong Xiong
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
7
|
Gopaldass N, Chen KE, Collins B, Mayer A. Assembly and fission of tubular carriers mediating protein sorting in endosomes. Nat Rev Mol Cell Biol 2024; 25:765-783. [PMID: 38886588 DOI: 10.1038/s41580-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
8
|
Chandra M, Kendall AK, Ford MGJ, Jackson LP. VARP binds SNX27 to promote endosomal supercomplex formation on membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603126. [PMID: 39026782 PMCID: PMC11257539 DOI: 10.1101/2024.07.11.603126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multiple essential membrane trafficking pathways converge at endosomes to maintain cellular homeostasis by sorting critical transmembrane cargo proteins to the plasma membrane or the trans-Golgi network (TGN). The Retromer heterotrimer (VPS26/VPS35/VPS29 subunits) binds multiple sorting nexin (SNX) proteins on endosomal membranes, but molecular mechanisms regarding formation and regulation of metazoan SNX/Retromer complexes have been elusive. Here, we combine biochemical and biophysical approaches with AlphaFold2 Multimer modeling to identify a direct interaction between the VARP N-terminus and SNX27 PDZ domain. VARP and SNX27 interact with high nanomolar affinity using the binding pocket established for PDZ binding motif (PDZbm) cargo. Specific point mutations in VARP abrogate the interaction in vitro. We further establish a full biochemical reconstitution system using purified mammalian proteins to directly and systematically test whether multiple endosomal coat complexes are recruited to membranes to generate tubules. We successfully use purified coat components to demonstrate which combinations of Retromer with SNX27, ESCPE-1 (SNX2/SNX6), or both complexes can remodel membranes containing physiological cargo motifs and phospholipid composition. SNX27, alone and with Retromer, induces tubule formation in the presence of PI(3)P and PDZ cargo motifs. ESCPE-1 deforms membranes enriched with Folch I and CI-MPR cargo motifs, but surprisingly does not recruit Retromer. Finally, we find VARP is required to reconstitute a proposed endosomal "supercomplex" containing SNX27, ESCPE-1, and Retromer on PI(3)P-enriched membranes. These data suggest VARP functions as a key regulator in metazoans to promote cargo sorting out of endosomes.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Amy K Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
9
|
Swaminathan U, Pucadyil TJ. Reconstituting membrane fission using a high content and throughput assay. Biochem Soc Trans 2024; 52:1449-1457. [PMID: 38747723 DOI: 10.1042/bst20231325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 05/01/2024] [Indexed: 06/27/2024]
Abstract
Protein-mediated membrane fission has been analyzed both in bulk and at the single event resolution. Studies on membrane fission in vitro using tethers have provided fundamental insights into the process but are low in throughput. In recent years, supported membrane template (SMrT) have emerged as a facile and convenient assay system for membrane fission. SMrTs provide useful information on intermediates in the pathway to fission and are therefore high in content. They are also high in throughput because numerous fission events can be monitored in a single experiment. This review discusses the utility of SMrTs in providing insights into fission pathways and its adaptation to annotate membrane fission functions in proteins.
Collapse
Affiliation(s)
- Uma Swaminathan
- Indian Institute of Science Education and Research, Pune, India
| | | |
Collapse
|
10
|
Lopez-Robles C, Scaramuzza S, Astorga-Simon EN, Ishida M, Williamson CD, Baños-Mateos S, Gil-Carton D, Romero-Durana M, Vidaurrazaga A, Fernandez-Recio J, Rojas AL, Bonifacino JS, Castaño-Díez D, Hierro A. Architecture of the ESCPE-1 membrane coat. Nat Struct Mol Biol 2023; 30:958-969. [PMID: 37322239 PMCID: PMC10352136 DOI: 10.1038/s41594-023-01014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Recycling of membrane proteins enables the reuse of receptors, ion channels and transporters. A key component of the recycling machinery is the endosomal sorting complex for promoting exit 1 (ESCPE-1), which rescues transmembrane proteins from the endolysosomal pathway for transport to the trans-Golgi network and the plasma membrane. This rescue entails the formation of recycling tubules through ESCPE-1 recruitment, cargo capture, coat assembly and membrane sculpting by mechanisms that remain largely unknown. Herein, we show that ESCPE-1 has a single-layer coat organization and suggest how synergistic interactions between ESCPE-1 protomers, phosphoinositides and cargo molecules result in a global arrangement of amphipathic helices to drive tubule formation. Our results thus define a key process of tubule-based endosomal sorting.
Collapse
Affiliation(s)
| | | | | | - Morié Ishida
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - David Gil-Carton
- CIC bioGUNE, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- BREM Basque Resource for Electron Microscopy, Leioa, Spain
| | - Miguel Romero-Durana
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | | | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | | | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Daniel Castaño-Díez
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland.
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
| | - Aitor Hierro
- CIC bioGUNE, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
11
|
Gopaldass N, De Leo MG, Courtellemont T, Mercier V, Bissig C, Roux A, Mayer A. Retromer oligomerization drives SNX-BAR coat assembly and membrane constriction. EMBO J 2023; 42:e112287. [PMID: 36644906 PMCID: PMC9841331 DOI: 10.15252/embj.2022112287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 01/17/2023] Open
Abstract
Proteins exit from endosomes through tubular carriers coated by retromer, a complex that impacts cellular signaling, lysosomal biogenesis and numerous diseases. The coat must overcome membrane tension to form tubules. We explored the dynamics and driving force of this process by reconstituting coat formation with yeast retromer and the BAR-domain sorting nexins Vps5 and Vps17 on oriented synthetic lipid tubules. This coat oligomerizes bidirectionally, forming a static tubular structure that does not exchange subunits. High concentrations of sorting nexins alone constrict membrane tubes to an invariant radius of 19 nm. At lower concentrations, oligomers of retromer must bind and interconnect the sorting nexins to drive constriction. Constricting less curved membranes into tubes, which requires more energy, coincides with an increased surface density of retromer on the sorting nexin layer. Retromer-mediated crosslinking of sorting nexins at variable densities may thus tune the energy that the coat can generate to deform the membrane. In line with this, genetic ablation of retromer oligomerization impairs endosomal protein exit in yeast and human cells.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of ImmunobiologyUniversity of LausanneEpalingesSwitzerland
| | | | | | - Vincent Mercier
- Department of BiochemistryUniversity of GenevaGenevaSwitzerland
| | - Christin Bissig
- Department of ImmunobiologyUniversity of LausanneEpalingesSwitzerland
| | - Aurélien Roux
- Department of BiochemistryUniversity of GenevaGenevaSwitzerland
- Swiss National Centre for Competence in Research Program Chemical BiologyGenevaSwitzerland
| | - Andreas Mayer
- Department of ImmunobiologyUniversity of LausanneEpalingesSwitzerland
| |
Collapse
|
12
|
Kümmel D, Herrmann E, Langemeyer L, Ungermann C. Molecular insights into endolysosomal microcompartment formation and maintenance. Biol Chem 2022; 404:441-454. [PMID: 36503831 DOI: 10.1515/hsz-2022-0294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Abstract
The endolysosomal system of eukaryotic cells has a key role in the homeostasis of the plasma membrane, in signaling and nutrient uptake, and is abused by viruses and pathogens for entry. Endocytosis of plasma membrane proteins results in vesicles, which fuse with the early endosome. If destined for lysosomal degradation, these proteins are packaged into intraluminal vesicles, converting an early endosome to a late endosome, which finally fuses with the lysosome. Each of these organelles has a unique membrane surface composition, which can form segmented membrane microcompartments by membrane contact sites or fission proteins. Furthermore, these organelles are in continuous exchange due to fission and fusion events. The underlying machinery, which maintains organelle identity along the pathway, is regulated by signaling processes. Here, we will focus on the Rab5 and Rab7 GTPases of early and late endosomes. As molecular switches, Rabs depend on activating guanine nucleotide exchange factors (GEFs). Over the last years, we characterized the Rab7 GEF, the Mon1-Ccz1 (MC1) complex, and key Rab7 effectors, the HOPS complex and retromer. Structural and functional analyses of these complexes lead to a molecular understanding of their function in the context of organelle biogenesis.
Collapse
Affiliation(s)
- Daniel Kümmel
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Eric Herrmann
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| |
Collapse
|
13
|
Courtellemont T, De Leo MG, Gopaldass N, Mayer A. CROP: a retromer-PROPPIN complex mediating membrane fission in the endo-lysosomal system. EMBO J 2022; 41:e109646. [PMID: 35466426 PMCID: PMC9108610 DOI: 10.15252/embj.2021109646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/06/2023] Open
Abstract
Endo-lysosomal compartments exchange proteins by fusing, fissioning, and through endosomal transport carriers. Thereby, they sort many plasma membrane receptors and transporters and control cellular signaling and metabolism. How the membrane fission events are catalyzed is poorly understood. Here, we identify the novel CROP complex as a factor acting at this step. CROP joins members of two protein families: the peripheral subunits of retromer, a coat forming endosomal transport carriers, and membrane inserting PROPPINs. Integration into CROP potentiates the membrane fission activity of the PROPPIN Atg18 on synthetic liposomes and confers strong preference for binding PI(3,5)P2 , a phosphoinositide required for membrane fission activity. Disrupting CROP blocks fragmentation of lysosome-like yeast vacuoles in vivo. CROP-deficient mammalian endosomes accumulate micrometer-long tubules and fail to export cargo, suggesting that carriers attempt to form but cannot separate from these organelles. PROPPINs compete for retromer binding with the SNX-BAR proteins, which recruit retromer to the membrane during the formation of endosomal carriers. Transition from retromer-SNX-BAR complexes to retromer-PROPPIN complexes might hence switch retromer activities from cargo capture to membrane fission.
Collapse
Affiliation(s)
| | | | - Navin Gopaldass
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
| | - Andreas Mayer
- Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
| |
Collapse
|
14
|
Cui L, Zhang Q, Huang Y, Yang L, Zhang J, Jiang X, Jia J, Lv Y, Zhang D, Huang Y. Impaired Retrograde Transport Due to Lack of TBC1D5 Contributes to the Trafficking Defect of Lysosomal Cathepsins in Ischemic/Hypoxic Cardiomyocytes. Front Cardiovasc Med 2022; 8:796254. [PMID: 35004909 PMCID: PMC8736705 DOI: 10.3389/fcvm.2021.796254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Lysosomal dysfunction has been found in many pathological conditions, and methods to improve lysosomal function have been reported to be protective against infarcted hearts. However, the mechanisms underlying lysosomal dysfunction caused by ischemic injury are far less well-established. The retromer complex is implicated in the trafficking of cation-independent mannose 6-phosphate receptor (CI-MPR), which is an important protein tag for the proper transport of lysosomal contents and therefore is important for the maintenance of lysosomal function. In this study, we found that the function of retrograde transport in cardiomyocytes was impaired with ischemia/hypoxia (I/H) treatment, which resulted in a decrease in CI-MPR and an abnormal distribution of lysosomal cathepsins. I/H treatment caused a reduction in TBC1D5 and a blockade of the Rab7 membrane cycle, which impeded retromer binding to microtubules and motor proteins, resulting in an impairment of retrograde transport and a decrease in CI-MPR. We also established that TBC1D5 was an important regulator of the distribution of lysosomal cathepsins. Our findings shed light on the regulatory role of retromer in ischemic injury and uncover the regulatory mechanism of TBC1D5 over retromer.
Collapse
Affiliation(s)
- Lin Cui
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yao Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junhui Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Endocrinology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xupin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Plastic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiezhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Lv
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuesheng Huang
- Department of Wound Repair and Institute of Wound Repair, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
15
|
Unveiling the cryo-EM structure of retromer. Biochem Soc Trans 2021; 48:2261-2272. [PMID: 33125482 DOI: 10.1042/bst20200552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
Retromer (VPS26/VPS35/VPS29) is a highly conserved eukaryotic protein complex that localizes to endosomes to sort transmembrane protein cargoes into vesicles and elongated tubules. Retromer mediates retrieval pathways from endosomes to the trans-Golgi network in all eukaryotes and further facilitates recycling pathways to the plasma membrane in metazoans. In cells, retromer engages multiple partners to orchestrate the formation of tubulovesicular structures, including sorting nexin (SNX) proteins, cargo adaptors, GTPases, regulators, and actin remodeling proteins. Retromer-mediated pathways are especially important for sorting cargoes required for neuronal maintenance, which links retromer loss or mutations to multiple human brain diseases and disorders. Structural and biochemical studies have long contributed to the understanding of retromer biology, but recent advances in cryo-electron microscopy and cryo-electron tomography have further uncovered exciting new snapshots of reconstituted retromer structures. These new structures reveal retromer assembles into an arch-shaped scaffold and suggest the scaffold may be flexible and adaptable in cells. Interactions with cargo adaptors, particularly SNXs, likely orient the scaffold with respect to phosphatidylinositol-3-phosphate (PtdIns3P)-enriched membranes. Pharmacological small molecule chaperones have further been shown to stabilize retromer in cultured cell and mouse models, but mechanisms by which these molecules bind remain unknown. This review will emphasize recent structural and biophysical advances in understanding retromer structure as the field moves towards a molecular view of retromer assembly and regulation on membranes.
Collapse
|
16
|
Djakbarova U, Madraki Y, Chan ET, Kural C. Dynamic interplay between cell membrane tension and clathrin-mediated endocytosis. Biol Cell 2021; 113:344-373. [PMID: 33788963 PMCID: PMC8898183 DOI: 10.1111/boc.202000110] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Deformability of the plasma membrane, the outermost surface of metazoan cells, allows cells to be dynamic, mobile and flexible. Factors that affect this deformability, such as tension on the membrane, can regulate a myriad of cellular functions, including membrane resealing, cell motility, polarisation, shape maintenance, membrane area control and endocytic vesicle trafficking. This review focuses on mechanoregulation of clathrin-mediated endocytosis (CME). We first delineate the origins of cell membrane tension and the factors that yield to its spatial and temporal fluctuations within cells. We then review the recent literature demonstrating that tension on the membrane is a fast-acting and reversible regulator of CME. Finally, we discuss tension-based regulation of endocytic clathrin coat formation during physiological processes.
Collapse
Affiliation(s)
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T. Chan
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Molecular Biophysics Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Retromer dysfunction at the nexus of tauopathies. Cell Death Differ 2021; 28:884-899. [PMID: 33473181 PMCID: PMC7937680 DOI: 10.1038/s41418-020-00727-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
Tauopathies define a broad range of neurodegenerative diseases that encompass pathological aggregation of the microtubule-associated protein tau. Although tau aggregation is a central feature of these diseases, their underlying pathobiology is remarkably heterogeneous at the molecular level. In this review, we summarize critical differences that account for this heterogeneity and contrast the physiological and pathological functions of tau. We focus on the recent understanding of its prion-like behavior that accounts for its spread in the brain. Moreover, we acknowledge the limited appreciation about how upstream cellular changes influence tauopathy. Dysfunction of the highly conserved endosomal trafficking complex retromer is found in numerous tauopathies such as Alzheimer's disease, Pick's disease, and progressive supranuclear palsy, and we discuss how this has emerged as a major contributor to various aspects of neurodegenerative diseases. In particular, we highlight recent investigations that have elucidated the contribution of retromer dysfunction to distinct measures of tauopathy such as tau hyperphosphorylation, aggregation, and impaired cognition and behavior. Finally, we discuss the potential benefit of targeting retromer for modifying disease burden and identify important considerations with such an approach moving toward clinical translation.
Collapse
|
18
|
Leneva N, Kovtun O, Morado DR, Briggs JAG, Owen DJ. Architecture and mechanism of metazoan retromer:SNX3 tubular coat assembly. SCIENCE ADVANCES 2021; 7:7/13/eabf8598. [PMID: 33762348 PMCID: PMC7990337 DOI: 10.1126/sciadv.abf8598] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/05/2021] [Indexed: 05/12/2023]
Abstract
Retromer is a master regulator of cargo retrieval from endosomes, which is critical for many cellular processes including signaling, immunity, neuroprotection, and virus infection. The retromer core (VPS26/VPS29/VPS35) is present on cargo-transporting, tubular carriers along with a range of sorting nexins. Here, we elucidate the structural basis of membrane tubulation and coupled cargo recognition by metazoan and fungal retromer coats assembled with the non-Bin1/Amphiphysin/Rvs (BAR) sorting nexin SNX3 using cryo-electron tomography. The retromer core retains its arched, scaffolding structure but changes its mode of membrane recruitment when assembled with different SNX adaptors, allowing cargo recognition at subunit interfaces. Thus, membrane bending and cargo incorporation can be modulated to allow retromer to traffic cargoes along different cellular transport routes.
Collapse
Affiliation(s)
- Natalya Leneva
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Oleksiy Kovtun
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - Dustin R Morado
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - John A G Briggs
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - David J Owen
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
19
|
Deatherage CL, Nikolaus J, Karatekin E, Burd CG. Retromer forms low order oligomers on supported lipid bilayers. J Biol Chem 2020; 295:12305-12316. [PMID: 32651229 PMCID: PMC7443500 DOI: 10.1074/jbc.ra120.013672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Retromer orchestrates the selection and export of integral membrane proteins from the endosome via retrograde and plasma membrane recycling pathways. Long-standing hypotheses regarding the retromer sorting mechanism posit that oligomeric interactions between retromer and associated accessory factors on the endosome membrane drives clustering of retromer-bound integral membrane cargo prior to its packaging into a nascent transport carrier. To test this idea, we examined interactions between components of the sorting nexin 3 (SNX3)-retromer sorting pathway using quantitative single particle fluorescence microscopy in a reconstituted system. This system includes a supported lipid bilayer, fluorescently labeled retromer, SNX3, and two model cargo proteins, RAB7, and retromer-binding segments of the WASHC2C subunit of the WASH complex. We found that the distribution of membrane-associated retromer is predominantly comprised of monomer (∼18%), dimer (∼35%), trimer (∼24%), and tetramer (∼13%). Unexpectedly, neither the presence of membrane-associated cargo nor accessory factors substantially affected this distribution. The results indicate that retromer has an intrinsic propensity to form low order oligomers on a supported lipid bilayer and that neither membrane association nor accessory factors potentiate oligomerization. The results support a model whereby SNX3-retromer is a minimally concentrative coat protein complex adapted to bulk membrane trafficking from the endosomal system.
Collapse
Affiliation(s)
| | - Joerg Nikolaus
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA; Nanobiology Institute, Yale University, West Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut, USA; Saints-Pères Paris Institute for the Neurosciences (SPPIN), CNRS, Université de Paris, Paris, France.
| | - Christopher G Burd
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
20
|
Weeratunga S, Paul B, Collins BM. Recognising the signals for endosomal trafficking. Curr Opin Cell Biol 2020; 65:17-27. [PMID: 32155566 DOI: 10.1016/j.ceb.2020.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
The endosomal compartment is a major sorting station controlling the balance between endocytic recycling and lysosomal degradation, and its homeostasis is emerging as a central factor in various neurodegenerative diseases such as Alzheimer's and Parkinson's. Membrane trafficking is generally coordinated by the recognition of specific signals in transmembrane protein cargos by different transport machineries. A number of different protein trafficking complexes are essential for sequence-specific recognition and retrieval of endosomal cargos, recycling them to other compartments and acting to counter-balance the default endosomal sorting complex required for transport-mediated degradation pathway. In this review, we provide a summary of the key endosomal transport machineries, and the molecular mechanisms by which different cargo sequences are specifically recognised.
Collapse
Affiliation(s)
- Saroja Weeratunga
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Blessy Paul
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia; University of Texas Southwestern Medical Center, Department of Cell Biology, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
21
|
Molecular identification of a BAR domain-containing coat complex for endosomal recycling of transmembrane proteins. Nat Cell Biol 2019; 21:1219-1233. [PMID: 31576058 PMCID: PMC6778059 DOI: 10.1038/s41556-019-0393-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
Protein trafficking requires coat complexes that couple recognition of sorting motifs in transmembrane cargos with biogenesis of transport carriers. The mechanisms of cargo transport through the endosomal network are poorly understood. Here, we identify a sorting motif for endosomal recycling of cargos including the cation-independent mannose-6-phosphate receptor and semaphorin 4C by the membrane tubulating BAR domain-containing sorting nexins SNX5 and SNX6. Crystal structures establish that this motif folds into a β-hairpin that binds a site in the SNX5/SNX6 phox homology domains. Over sixty cargos share this motif and require SNX5/SNX6 for their recycling. These include cargos involved in neuronal migration and a Drosophila snx6 mutant displays defects in axonal guidance. These studies identify a sorting motif and provide molecular insight into an evolutionary conserved coat complex, the ‘Endosomal SNX-BAR sorting complex for promoting exit 1’ (ESCPE-1), which couples sorting motif recognition to BAR domain-mediated biogenesis of cargo-enriched tubulo-vesicular transport carriers.
Collapse
|
22
|
Ma M, Burd CG. Retrograde trafficking and plasma membrane recycling pathways of the budding yeast Saccharomyces cerevisiae. Traffic 2019; 21:45-59. [PMID: 31471931 DOI: 10.1111/tra.12693] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
The endosomal system functions as a network of protein and lipid sorting stations that receives molecules from endocytic and secretory pathways and directs them to the lysosome for degradation, or exports them from the endosome via retrograde trafficking or plasma membrane recycling pathways. Retrograde trafficking pathways describe endosome-to-Golgi transport while plasma membrane recycling pathways describe trafficking routes that return endocytosed molecules to the plasma membrane. These pathways are crucial for lysosome biogenesis, nutrient acquisition and homeostasis and for the physiological functions of many types of specialized cells. Retrograde and recycling sorting machineries of eukaryotic cells were identified chiefly through genetic screens using the budding yeast Saccharomyces cerevisiae system and discovered to be highly conserved in structures and functions. In this review, we discuss advances regarding retrograde trafficking and recycling pathways, including new discoveries that challenge existing ideas about the organization of the endosomal system, as well as how these pathways intersect with cellular homeostasis pathways.
Collapse
Affiliation(s)
- Mengxiao Ma
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Christopher G Burd
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
23
|
|