1
|
Li L, Tang X, Guo X, Rao D, Zeng L, Xue J, Liu S, Tu S, Shen EZ. Spatiotemporal single-cell architecture of gene expression in the Caenorhabditis elegans germ cells. Cell Discov 2025; 11:26. [PMID: 40097379 PMCID: PMC11914268 DOI: 10.1038/s41421-025-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Spermatogenesis is an intricate and tightly controlled process encompassing various layers of gene expression regulation. Despite the advance of our current understanding, the developmental trajectory and regulatory mechanisms dictating spermatogenesis remain elusive. In this study, we have generated single-cell gene expression profiles for Caenorhabditis elegans sperm cells and constructed gene regulatory networks alongside the developmental trajectories of these cells. Our findings indicate that each pre- and post-developmental stage is closely linked by co-expressed genes, while simultaneously being uniquely identified by the combined expression of specific gene families. To illustrate the applicability of this exhaustive gene expression catalog, we used gene regulatory networks to uncover potential transcription factors for (1) the expression of genes in the phosphorylation pathway, identifying NHR-23-to-phosphatase regulation for the meiotic cell division process; and (2) the expression of constituent components of small RNA pathways, identifying ELT-1-to-Argonaute protein regulation for siRNA maintenance and sperm activation. We expect that this sperm cell-specific gene expression directory will prompt investigations into the underlying mechanisms determining anatomy, differentiation, and function across the reproductive system. Finally, our expression data can be explored using the web application CelegansGermAtlas ( https://scgerm-atlas.sjtu.edu.cn/website/#/home ).
Collapse
Affiliation(s)
- Lili Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoyin Tang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xuanxuan Guo
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Di Rao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lin Zeng
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - Junchao Xue
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shuxian Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shikui Tu
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - En-Zhi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Sun D, He S, Li X, Jin B, Wu F, Liu D, Dong Z, Chen G. Toxic effects and mechanistic insights of cadmium telluride quantum dots on the homeostasis and regeneration in planarians. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137047. [PMID: 39754879 DOI: 10.1016/j.jhazmat.2024.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels. The results showed that exposure to CdTe QDs led to tissue damage, abnormal motor behavior, delayed regeneration, morphological abnormalities, and reduced survival. Furthermore, CdTe QDs caused excessive stem cell proliferation, leading to defective differentiation of tissues such as the epidermis, cilia, protonephridia, muscle, and nerves. Neurotoxicity manifests as a reduction in the number of neurons and neurotransmitter imbalance. Further studies revealed that CdTe QDs induced cell death by promoting reactive oxygen species (ROS) accumulation, triggering oxidative stress and deoxyribonucleic acid (DNA) damage, which led to excessive mitochondrial fission and activation of the mitochondria-dependent apoptotic signaling pathway. Overall, the balance between stem cell proliferation, differentiation, and apoptosis was disrupted, ultimately leading to delayed regeneration and homeostatic imbalance. These findings offer new insights into the environmental risk assessment of QDs and provide valuable directions for further research on their toxic effects on human stem cells and regenerative processes.
Collapse
Affiliation(s)
- Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Siyuan He
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xuheng Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Fan Wu
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang 453007, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
3
|
Curry HN, Huynh R, Rouhana L. Melastatin subfamily Transient Receptor Potential channels support spermatogenesis in planarian flatworms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.01.610670. [PMID: 39282438 PMCID: PMC11398416 DOI: 10.1101/2024.09.01.610670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The Transient Receptor Potential superfamily of proteins (TRPs) form cation channels that are abundant in animal sensory systems. Amongst TRPs, the Melastatin-related subfamily (TRPMs) is composed of members that respond to temperature, pH, sex hormones, and various other stimuli. Some TRPMs exhibit enriched expression in gonads of vertebrate and invertebrate species, but their contributions to germline development remain to be determined. We identified twenty-one potential TRPMs in the planarian flatworm Schmidtea mediterranea and analyzed their anatomical distribution of expression by whole-mount in situ hybridization. Enriched expression of two TRPMs (Smed-TRPM-c and Smed-TRPM-l) was detected in testis, whereas eight TRPM genes had detectable expression in patterns representative of neuronal and/or sensory cell types. Functional analysis of TRPM homologs by RNA-interference (RNAi) revealed that disruption of Smed-TRPM-c expression results in reduced sperm development, indicating a role for this receptor in supporting spermatogenesis. Smed-TRPM-l RNAi did not result in a detectable phenotype, but it increased sperm development deficiencies when combined with Smed-TRPM-c RNAi. Fluorescence in situ hybridization revealed expression of Smed-TRPM-c in early spermatogenic cells within testes, suggesting cell-autonomous regulatory functions in germ cells for this gene. In addition, Smed-TRPM-c RNAi resulted in reduced numbers of presumptive germline stem cell clusters in asexual planarians, suggesting that Smed-TRPM-c supports establishment, maintenance, and/or expansion of spermatogonial germline stem cells. While further research is needed to identify the factors that trigger Smed-TRPM-c activity, these findings reveal one of few known examples for TRPM function in direct regulation of sperm development.
Collapse
Affiliation(s)
- Haley Nicole Curry
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA
| | - Roger Huynh
- Department of Biology, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, MA 02125-3393, USA
| | - Labib Rouhana
- Department of Biology, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, MA 02125-3393, USA
| |
Collapse
|
4
|
Fernandez-Encinas A, Ribas-Maynou J, García-Peiró A, Garcia-Segura S, Martinez-Pasarell O, Navarro J, Oliver-Bonet M, Benet J. TMT-Based Proteomic Analysis of Human Spermatozoa from Unexplained Recurrent Miscarriage Patients before and after Oral Antioxidant Treatment. Biomedicines 2022; 10:biomedicines10082014. [PMID: 36009561 PMCID: PMC9405561 DOI: 10.3390/biomedicines10082014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Recently, sperm quality and the presence of double-stranded breaks (DSB) has been pointed out as a possible cause of recurrent miscarriage, and the use of antioxidants has expanded as a treatment for male infertility. The aim of the present study was to analyze the proteomic effects of antioxidants on sperm from RM patients with high incidence of DSB. Proteomic analysis was performed using a tandem mass tag labeling technique, and subsequently compared with the PANTHER database for DEPs, and the STRING database for protein–protein interactions (PPI). Differentially expressed proteins (DEPs) both before and after antioxidant oral treatment were identified. PPI involving DEPs clustered into networks related to cell metabolism, cytoskeleton, and DNA damage. Results show that the sperm proteomic profiles before and after antioxidant treatment do not significantly differ from each other. However, some DEPs found after the antioxidant treatment shifted towards a DEPs profile typical of fertile donors. This indirect measurement suggests an improvement caused by antioxidants on the expression of several proteins. Among them were proteins involved in sperm DNA remodeling (LMO7, MMP28, BNC2, H2B, and PRDM2). The results presented here represent the first approach in the analysis and repair of the proteomic change caused by antioxidants in recurrent miscarriage patients, elucidating biomarkers that may be useful for the diagnosis and further sperm selection in this type of patient. Further studies should be conducted to validate the usefulness of these biomarkers in larger study groups.
Collapse
Affiliation(s)
- Alba Fernandez-Encinas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Jordi Ribas-Maynou
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (J.R.-M.); (M.O.-B.); Tel.: +34-972-419514 (J.R.-M.); Fax: +34-972-418150 (J.R.-M.)
| | - Agustín García-Peiró
- Centro de Infertilidad Masculina y Análisis de Barcelona (CIMAB), Sant Quirze del Vallès, 08193 Barcelona, Spain
| | - Sergio Garcia-Segura
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | - Joaquima Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Oliver-Bonet
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (J.R.-M.); (M.O.-B.); Tel.: +34-972-419514 (J.R.-M.); Fax: +34-972-418150 (J.R.-M.)
| | - Jordi Benet
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
5
|
Analysis of Morphogenesis and Flagellar Assembly During Spermatogenesis in Planarian Flatworms. Methods Mol Biol 2022; 2364:199-216. [PMID: 34542855 DOI: 10.1007/978-1-0716-1661-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spermatogenesis is one of the most dramatic cellular differentiation events observed in animals. In particular, spermiogenesis (the final stage of spermatogenesis) involves extensive shedding of cytoplasmic organelles, dramatic nuclear rearrangements, and assembly of long flagellar structures. In planarian flatworms, the spherical nucleus present in round spermatids elongates to produce the filamentous nucleus of mature sperm. Newly formed cortical microtubules participate in cytoskeletal rearrangements observed during spermiogenesis and remain present in sperm. In addition, a pair of flagella assemble at one end of each spermatid in a process that likely involves de novo formation of centrioles. This chapter includes a brief introduction to planarian spermatogenesis and current tools for the analysis of molecular players in this process. Step-by-step protocols for isolating and imaging spermatogenic cells are provided with enough detail to be carried out by newcomers to the field who would like to study this unique organism in the laboratory.
Collapse
|
6
|
Christman DA, Curry HN, Rouhana L. Heterotrimeric Kinesin II is required for flagellar assembly and elongation of nuclear morphology during spermiogenesis in Schmidtea mediterranea. Dev Biol 2021; 477:191-204. [PMID: 34090925 PMCID: PMC8277772 DOI: 10.1016/j.ydbio.2021.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 05/08/2021] [Accepted: 05/22/2021] [Indexed: 11/19/2022]
Abstract
Development of sperm requires microtubule-based movements that drive assembly of a compact head and flagellated tails. Much is known about how flagella are built given their shared molecular core with motile cilia, but less is known about the mechanisms that shape the sperm head. The Kinesin Superfamily Protein 3A (KIF3A) pairs off with a second motor protein (KIF3B) and the Kinesin Associated Protein 3 (KAP3) to form Heterotrimeric Kinesin II. This complex drives intraflagellar transport (IFT) along microtubules during ciliary assembly. We show that KIF3A and KAP3 orthologs in Schmidtea mediterranea are required for axonemal assembly and nuclear elongation during spermiogenesis. Expression of Smed-KAP3 is enriched during planarian spermatogenesis with transcript abundance peaking in spermatocyte and spermatid cells. Disruption of Smed-kif3A or Smed-KAP3 expression by RNA-interference results in loss of spermatozoa and accumulation of unelongated spermatids. Confocal microscopy of planarian testis lobes stained with alpha-tubulin antibodies revealed that spermatids with disrupted Kinesin II function fail to assemble flagella, and visualization with 4',6-diamidino-2-phenylindole (DAPI) revealed reduced nuclear elongation. Disruption of Smed-kif3A or Smed-KAP3 expression also resulted in edema, reduced locomotion, and loss of epidermal cilia, which corroborates with somatic phenotypes previously reported for Smed-kif3B. These findings demonstrate that heterotrimeric Kinesin II drives assembly of cilia and flagella, as well as rearrangements of nuclear morphology in developing sperm. Prolonged activity of heterotrimeric Kinesin II in manchette-like structures with extended presence during spermiogenesis is hypothesized to result in the exaggerated nuclear elongation observed in sperm of turbellarians and other lophotrochozoans.
Collapse
Affiliation(s)
- Donovan A Christman
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435-0001, USA
| | - Haley N Curry
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435-0001, USA
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435-0001, USA.
| |
Collapse
|
7
|
Lesko SL, Rouhana L. Dynein assembly factor with WD repeat domains 1 (DAW1) is required for the function of motile cilia in the planarian Schmidtea mediterranea. Dev Growth Differ 2020; 62:423-437. [PMID: 32359074 DOI: 10.1111/dgd.12669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/04/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Motile cilia propel directed cell movements and sweep fluids across the surface of tissues. Orthologs of Dynein Assembly Factor with WD Repeat Domains 1 (DAW1) support normal ciliary beating by enhancing delivery of dynein complexes to axonemal microtubules. DAW1 mutations in vertebrates result in multiple developmental abnormalities and early or prenatal lethality, complicating functional assessment of DAW1 in adult structures. Planarian flatworms maintain cellular homeostasis and regenerate through differentiation of adult pluripotent stem cells, and systemic RNA-interference (RNAi) can be induced to analyze gene function at any point after birth. A single ortholog of DAW1 was identified in the genome of the planarian Schmidtea mediterranea (Smed-daw1). Smed-DAW1 is composed of eight WD repeats, which are 55% identical to the founding member of this protein family (Chlamydomonas reinhardtii ODA16) and 58% identical to human DAW1. Smed-daw1 is expressed in the planarian epidermis, protonephridial excretory system, and testes, all of which contain cells functionally dependent on motile cilia. Smed-daw1 RNAi resulted in locomotion defects and edema, which are phenotypes characteristic of multiciliated epidermis and protonephridial dysfunction, respectively. Changes in abundance or length of motile cilia were not observed at the onset of phenotypic manifestations upon Smed-daw1 RNAi, corroborating with studies showing that DAW-1 loss of function leads to aberrant movement of motile cilia in other organisms, rather than loss of cilia per se. However, extended RNAi treatments did result in shorter epidermal cilia and decreased abundance of ciliated protonephridia, suggesting that Smed-daw1 is required for homeostatic maintenance of these structures in flatworms.
Collapse
Affiliation(s)
- Sydney Lynn Lesko
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| |
Collapse
|
8
|
Cai Z, Zhang J, Xiong J, Ma C, Yang B, Li H. New insights into the potential mechanisms of spermatogenic failure in patients with idiopathic azoospermia. Mol Hum Reprod 2020; 26:469-484. [PMID: 32402059 DOI: 10.1093/molehr/gaaa033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Abstract
Idiopathic azoospermia (IA) refers to azoospermia without a clear aetiology. Due to the unclear aetiology and pathological mechanism of IA, there is no effective treatment for IA. The development of assisted reproductive and microsperm extraction technologies has brought hope to patients with IA with fertility problems. However, there are still many patients with IA whose testes lack healthy sperm, causing infertility. Therefore, it is key to identify how testicular spermatogenic failure can be reversed to promote spermatogenesis in patients with IA to resolve fertility problems; these goals are a great challenge in reproductive medicine. The underlying genetic factors seem to be important pathological factors of IA. Understanding the role of genetic factors in the pathological mechanism of spermatogenic failure in patients with IA is of great value for future studies and treatments and is also an important reference for the reproductive health of males and their offspring. A method combining sequencing technology and bioinformatics analysis is an important means to understand the genetic pathological mechanisms. We used bioinformatics analysis to study the public human IA dataset. We found that the pathogenic mechanism of IA may be related to abnormal ciliary structure and function and disrupted RNA metabolism in spermatogenic cells. Disrupted m6A regulation of spermatogenesis may be an important pathological mechanism of IA and warrants attention. Finally, we screened for key genes and potential therapeutic drugs to determine future research directions.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianzhong Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Xiong
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chengquan Ma
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Mori M, Narahashi M, Hayashi T, Ishida M, Kumagai N, Sato Y, Bagherzadeh R, Agata K, Inoue T. Calcium ions in the aquatic environment drive planarians to food. ZOOLOGICAL LETTERS 2019; 5:31. [PMID: 31720007 PMCID: PMC6836377 DOI: 10.1186/s40851-019-0147-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/21/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Even subtle changes in environmental factors can exert behavioral effects on creatures, which may alter interspecific interactions and eventually affect the ecosystem. However, how changes in environmental factors impact complex behaviors regulated by neural processes is largely unknown. The freshwater planarian Dugesia japonica, a free-living flatworm, displays distinct behavioral traits mediated by sensitive perception of environmental cues. Planarians are thus useful organisms for examining interactions between environmental changes and specific behaviors of animals. RESULTS Here we found that feeding behavior was suppressed when the concentration of ions in the breeding water was low, while other behaviors were unaffected, resulting in differences in population size. Notably, the decline in feeding behavior was reversed in an ion-concentration-dependent manner soon after the planarians were moved to ion-containing water, which suggests that ions in environmental water rapidly promote feeding behavior in planarians. Moreover, the concentration of ions in the environmental water affected the feeding behavior by modulating the sensitivity of the response to foods. Finally, we found that calcium ions in the aquatic environment were required for the feeding behavior, and exposure to higher levels of calcium ions enhanced the feeding behavior, showing that there was a good correlation between the concentration of calcium ions and the responsiveness of planarians to foods. CONCLUSIONS Environmental calcium ions are indispensable for and potentiate the activity level of the feeding behavior of planarians. Our findings suggest that the ions in the aquatic environment profoundly impact the growth and survival of aquatic animals via modulating their neural activities and behaviors.
Collapse
Affiliation(s)
- Masato Mori
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| | - Maria Narahashi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Japan
| | - Miyuki Ishida
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| | - Nobuyoshi Kumagai
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| | - Yuki Sato
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
| | - Reza Bagherzadeh
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Banihashem, Tehran, Iran
| | - Kiyokazu Agata
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
- National Institute for Basic Biology, National Institutes of Natural Science, 38 Nishigonaka, Myodaiji, Okazaki, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan
| |
Collapse
|