1
|
Rao BD, Gomez-Gil E, Peter M, Balogh G, Nunes V, MacRae JI, Chen Q, Rosenthal PB, Oliferenko S. Horizontal acquisition of prokaryotic hopanoid biosynthesis reorganizes membrane physiology driving lifestyle innovation in a eukaryote. Nat Commun 2025; 16:3291. [PMID: 40195311 PMCID: PMC11976957 DOI: 10.1038/s41467-025-58515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Horizontal gene transfer is a source of metabolic innovation and adaptation to new environments. How new metabolic functionalities are integrated into host cell biology is largely unknown. Here, we probe this fundamental question using the fission yeast Schizosaccharomyces japonicus, which has acquired a squalene-hopene cyclase Shc1 through horizontal gene transfer. We show that Shc1-dependent production of hopanoids, mimics of eukaryotic sterols, allows S. japonicus to thrive in anoxia, where sterol biosynthesis is not possible. We demonstrate that glycerophospholipid fatty acyl asymmetry, prevalent in S. japonicus, is crucial for accommodating both sterols and hopanoids in membranes and explain how Shc1 functions alongside the sterol biosynthetic pathway to support membrane properties. Reengineering experiments in the sister species S. pombe show that hopanoids entail new traits in a naïve organism, but the acquisition of a new enzyme may trigger profound reorganization of the host metabolism and physiology.
Collapse
Affiliation(s)
- Bhagyashree Dasari Rao
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK
- The Francis Crick Institute, London, UK
| | - Elisa Gomez-Gil
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK
- The Francis Crick Institute, London, UK
| | - Maria Peter
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gabor Balogh
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | | | | | - Qu Chen
- The Francis Crick Institute, London, UK
| | | | - Snezhana Oliferenko
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Acs-Szabo L, Papp LA, Miklos I. Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:288-311. [PMID: 39104724 PMCID: PMC11299203 DOI: 10.15698/mic2024.08.833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (Saccharomyces cerevisiae) is the most popular model among yeasts, the contribution of the fission yeasts (Schizosaccharomyces) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast Schizosaccharomyces japonicus, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of S. japonicus as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.
Collapse
Affiliation(s)
- Lajos Acs-Szabo
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Laszlo Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Ida Miklos
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| |
Collapse
|
3
|
Etherington GJ, Wu PS, Oliferenko S, Uhlmann F, Nieduszynski CA. Telomere-to-telomere Schizosaccharomyces japonicus genome assembly reveals hitherto unknown genome features. Yeast 2024; 41:73-86. [PMID: 38451028 DOI: 10.1002/yea.3912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 03/08/2024] Open
Abstract
Schizosaccharomyces japonicus belongs to the single-genus class Schizosaccharomycetes, otherwise known as "fission yeasts." As part of a composite model system with its widely studied S. pombe sister species, S. japonicus has provided critical insights into the workings and the evolution of cell biological mechanisms. Furthermore, its divergent biology makes S. japonicus a valuable model organism in its own right. However, the currently available genome assembly contains gaps and has been unable to resolve centromeres and other repeat-rich chromosomal regions. Here we present a telomere-to-telomere long-read genome assembly of the S. japonicus genome. This includes the three megabase-length chromosomes, with centromeres hundreds of kilobases long, rich in 5S ribosomal RNA genes, transfer RNA genes, long terminal repeats, and short repeats. We identify a gene-sparse region on chromosome 2 that resembles a 331 kb centromeric duplication. We revise the genome size of S. japonicus to at least 16.6 Mb and possibly up to 18.12 Mb, at least 30% larger than previous estimates. Our whole genome assembly will support the growing S. japonicus research community and facilitate research in new directions, including centromere and DNA repeat evolution, and yeast comparative genomics.
Collapse
Affiliation(s)
| | | | - Snezhana Oliferenko
- The Francis Crick Institute, London, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Frank Uhlmann
- The Francis Crick Institute, London, UK
- Cell Biology Centre, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| | - Conrad A Nieduszynski
- The Earlham Institute, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
4
|
Etherington GJ, Gil EG, Haerty W, Oliferenko S, Nieduszynski CA. Schizosaccharomyces versatilis represents a distinct evolutionary lineage of fission yeast. Yeast 2024; 41:95-107. [PMID: 38146786 DOI: 10.1002/yea.3919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023] Open
Abstract
The fission yeast species Schizosaccharomyces japonicus is currently divided into two varieties-S. japonicus var. japonicus and S. japonicus var. versatilis. Here we examine the var. versatilis isolate CBS5679. The CBS5679 genome shows 88% identity to the reference genome of S. japonicus var. japonicus at the coding sequence level, with phylogenetic analyses suggesting that it has split from the S. japonicus lineage 25 million years ago. The CBS5679 genome contains a reciprocal translocation between chromosomes 1 and 2, together with several large inversions. The products of genes linked to the major translocation are associated with 'metabolism' and 'cellular assembly' ontology terms. We further show that CBS5679 does not generate viable progeny with the reference strain of S. japonicus. Although CBS5679 shares closer similarity to the 'type' strain of var. versatilis as compared to S. japonicus, it is not identical to the type strain, suggesting population structure within var. versatilis. We recommend that the taxonomic status of S. japonicus var. versatilis is raised, with it being treated as a separate species, Schizosaccharomyces versatilis.
Collapse
Affiliation(s)
| | - Elisa Gomez Gil
- Oliferenko Lab, The Francis Crick Institute, London, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Wilfried Haerty
- Research Faculty, The Earlham Institute, Norwich Research Park, Norwich, UK
| | - Snezhana Oliferenko
- Oliferenko Lab, The Francis Crick Institute, London, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Conrad A Nieduszynski
- Research Faculty, The Earlham Institute, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
5
|
Prieto-Ruiz F, Gómez-Gil E, Vicente-Soler J, Franco A, Soto T, Madrid M, Cansado J. Divergence of cytokinesis and dimorphism control by myosin II regulatory light chain in fission yeasts. iScience 2023; 26:107611. [PMID: 37664581 PMCID: PMC10470405 DOI: 10.1016/j.isci.2023.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
Non-muscle myosin II activation by regulatory light chain (Rlc1Sp) phosphorylation at Ser35 is crucial for cytokinesis during respiration in the fission yeast Schizosaccharomyces pombe. We show that in the early divergent and dimorphic fission yeast S. japonicus non-phosphorylated Rlc1Sj regulates the activity of Myo2Sj and Myp2Sj heavy chains during cytokinesis. Intriguingly, Rlc1Sj-Myo2Sj nodes delay yeast to hyphae onset but are essential for mycelial development. Structure-function analysis revealed that phosphorylation-induced folding of Rlc1Sp α1 helix into an open conformation allows precise regulation of Myo2Sp during cytokinesis. Consistently, inclusion of bulky tryptophan residues in the adjacent α5 helix triggered Rlc1Sp shift and supported cytokinesis in absence of Ser35 phosphorylation. Remarkably, unphosphorylated Rlc1Sj lacking the α1 helix was competent to regulate S. pombe cytokinesis during respiration. Hence, early diversification resulted in two efficient phosphorylation-independent and -dependent modes of Rlc1 regulation of myosin II activity in fission yeasts, the latter being conserved through evolution.
Collapse
Affiliation(s)
- Francisco Prieto-Ruiz
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - Elisa Gómez-Gil
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jero Vicente-Soler
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - Alejandro Franco
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - Marisa Madrid
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain
| |
Collapse
|
6
|
Aoki K, Yamamoto K, Ohkuma M, Sugita T, Tanaka N, Takashima M. Hyphal Growth in Trichosporon asahii Is Accelerated by the Addition of Magnesium. Microbiol Spectr 2023; 11:e0424222. [PMID: 37102973 PMCID: PMC10269644 DOI: 10.1128/spectrum.04242-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Fungal dimorphism involves two morphologies: a unicellular yeast cell and a multicellular hyphal form. Invasion of hyphae into human cells causes severe opportunistic infections. The transition between yeast and hyphal forms is associated with the virulence of fungi; however, the mechanism is poorly understood. Therefore, we aimed to identify factors that induce hyphal growth of Trichosporon asahii, a dimorphic basidiomycete that causes trichosporonosis. T. asahii showed poor growth and formed small cells containing large lipid droplets and fragmented mitochondria when cultivated for 16 h in a nutrient-deficient liquid medium. However, these phenotypes were suppressed via the addition of yeast nitrogen base. When T. asahii cells were cultivated in the presence of different compounds present in the yeast nitrogen base, we found that magnesium sulfate was a key factor for inducing cell elongation, and its addition dramatically restored hyphal growth in T. asahii. In T. asahii hyphae, vacuoles were enlarged, the size of lipid droplets was decreased, and mitochondria were distributed throughout the cell cytoplasm and adjacent to the cell walls. Additionally, hyphal growth was disrupted due to treatment with an actin inhibitor. The actin inhibitor latrunculin A disrupted the mitochondrial distribution even in hyphal cells. Furthermore, magnesium sulfate treatment accelerated hyphal growth in T. asahii for 72 h when the cells were cultivated in a nutrient-deficient liquid medium. Collectively, our results suggest that an increase in magnesium levels triggers the transition from the yeast to hyphal form in T. asahii. These findings will support studies on the pathogenesis of fungi and aid in developing treatments. IMPORTANCE Understanding the mechanism underlying fungal dimorphism is crucial to discern its invasion into human cells. Invasion is caused by the hyphal form rather than the yeast form; therefore, it is important to understand the mechanism of transition from the yeast to hyphal form. To study the transition mechanism, we utilized Trichosporon asahii, a dimorphic basidiomycete that causes severe trichosporonosis since there are fewer studies on T. asahii than on ascomycetes. This study suggests that an increase in Mg2+, the most abundant mineral in living cells, triggers growth of filamentous hyphae and increases the distribution of mitochondria throughout the cell cytoplasm and adjacent to the cell walls in T. asahii. Understanding the mechanism of hyphal growth triggered by Mg2+ increase will provide a model system to explore fungal pathogenicity in the future.
Collapse
Affiliation(s)
- Keita Aoki
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Kosuke Yamamoto
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Naoto Tanaka
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Masako Takashima
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| |
Collapse
|
7
|
Cell wall dynamics stabilize tip growth in a filamentous fungus. PLoS Biol 2023; 21:e3001981. [PMID: 36649360 PMCID: PMC9882835 DOI: 10.1371/journal.pbio.3001981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/27/2023] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Hyphal tip growth allows filamentous fungi to colonize space, reproduce, or infect. It features remarkable morphogenetic plasticity including unusually fast elongation rates, tip turning, branching, or bulging. These shape changes are all driven from the expansion of a protective cell wall (CW) secreted from apical pools of exocytic vesicles. How CW secretion, remodeling, and deformation are modulated in concert to support rapid tip growth and morphogenesis while ensuring surface integrity remains poorly understood. We implemented subresolution imaging to map the dynamics of CW thickness and secretory vesicles in Aspergillus nidulans. We found that tip growth is associated with balanced rates of CW secretion and expansion, which limit temporal fluctuations in CW thickness, elongation speed, and vesicle amount, to less than 10% to 20%. Affecting this balance through modulations of growth or trafficking yield to near-immediate changes in CW thickness, mechanics, and shape. We developed a model with mechanical feedback that accounts for steady states of hyphal growth as well as rapid adaptation of CW mechanics and vesicle recruitment to different perturbations. These data provide unprecedented details on how CW dynamics emerges from material secretion and expansion, to stabilize fungal tip growth as well as promote its morphogenetic plasticity.
Collapse
|
8
|
A focus on yeast mating: From pheromone signaling to cell-cell fusion. Semin Cell Dev Biol 2023; 133:83-95. [PMID: 35148940 DOI: 10.1016/j.semcdb.2022.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Cells live in a chemical environment and are able to orient towards chemical cues. Unicellular haploid fungal cells communicate by secreting pheromones to reproduce sexually. In the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, pheromonal communication activates similar pathways composed of cognate G-protein-coupled receptors and downstream small GTPase Cdc42 and MAP kinase cascades. Local pheromone release and sensing, at a mobile surface polarity patch, underlie spatial gradient interpretation to form pairs between two cells of distinct mating types. Concentration of secretion at the point of cell-cell contact then leads to local cell wall digestion for cell fusion, forming a diploid zygote that prevents further fusion attempts. A number of asymmetries between mating types may promote efficiency of the system. In this review, we present our current knowledge of pheromone signaling in the two model yeasts, with an emphasis on how cells decode the pheromone signal spatially and ultimately fuse together. Though overall pathway architectures are similar in the two species, their large evolutionary distance allows to explore how conceptually similar solutions to a general biological problem can arise from divergent molecular components.
Collapse
|
9
|
Fukunaga T, Ohashi T, Tanaka Y, Yoshimatsu T, Higuchi Y, Maekawa H, Takegawa K. Galactosylation of cell-surface glycoprotein required for hyphal growth and cell wall integrity in Schizosaccharomyces japonicus. J Biosci Bioeng 2022; 134:384-392. [DOI: 10.1016/j.jbiosc.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022]
|
10
|
Rutherford KM, Harris MA, Oliferenko S, Wood V. JaponicusDB: rapid deployment of a model organism database for an emerging model species. Genetics 2021; 220:6481558. [PMID: 35380656 PMCID: PMC9209809 DOI: 10.1093/genetics/iyab223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
The fission yeast Schizosaccharomyces japonicus has recently emerged as a powerful system for studying the evolution of essential cellular processes, drawing on similarities as well as key differences between S. japonicus and the related, well-established model Schizosaccharomyces pombe. We have deployed the open-source, modular code and tools originally developed for PomBase, the S. pombe model organism database (MOD), to create JaponicusDB (www.japonicusdb.org), a new MOD dedicated to S. japonicus. By providing a central resource with ready access to a growing body of experimental data, ontology-based curation, seamless browsing and querying, and the ability to integrate new data with existing knowledge, JaponicusDB supports fission yeast biologists to a far greater extent than any other source of S. japonicus data. JaponicusDB thus enables S. japonicus researchers to realize the full potential of studying a newly emerging model species and illustrates the widely applicable power and utility of harnessing reusable PomBase code to build a comprehensive, community-maintainable repository of species-relevant knowledge.
Collapse
Affiliation(s)
- Kim M Rutherford
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Midori A Harris
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Snezhana Oliferenko
- The Francis Crick Institute, London NW1 1AT, UK,Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London SE1 1UL, UK,Corresponding author: (S.O.); (V.W.)
| | - Valerie Wood
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK,Corresponding author: (S.O.); (V.W.)
| |
Collapse
|
11
|
Papp LA, Ács-Szabó L, Batta G, Miklós I. Molecular and comparative genomic analyses reveal evolutionarily conserved and unique features of the Schizosaccharomyces japonicus mycelial growth and the underlying genomic changes. Curr Genet 2021; 67:953-968. [PMID: 34427722 PMCID: PMC8594269 DOI: 10.1007/s00294-021-01206-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 11/25/2022]
Abstract
Fungal pathogens, from phytopathogenic fungus to human pathogens, are able to alternate between the yeast-like form and filamentous forms. This morphological transition (dimorphism) is in close connection with their pathogenic lifestyles and with their responses to changing environmental conditions. The mechanisms governing these morphogenetic conversions are still not fully understood. Therefore, we studied the filamentous growth of the less-known, non-pathogenic dimorphic fission yeast, S. japonicus, which belongs to an ancient and early evolved branch of the Ascomycota. Its RNA sequencing revealed that several hundred genes were up- or down-regulated in the hyphae compared to the yeast-phase cells. These genes belonged to different GO categories, confirming that mycelial growth is a rather complex process. The genes of transport- and metabolic processes appeared especially in high numbers among them. High expression of genes involved in glycolysis and ethanol production was found in the hyphae, while other results pointed to the regulatory role of the protein kinase A (PKA) pathway. The homologues of 49 S. japonicus filament-associated genes were found by sequence alignments also in seven distantly related dimorphic and filamentous species. The comparative genomic analyses between S. japonicus and the closely related but non-dimorphic S. pombe shed some light on the differences in their genomes. All these data can contribute to a better understanding of hyphal growth and those genomic rearrangements that underlie it.
Collapse
Affiliation(s)
- László Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Lajos Ács-Szabó
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Gyula Batta
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Ida Miklós
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
| |
Collapse
|
12
|
Bouwknegt J, Wiersma SJ, Ortiz-Merino RA, Doornenbal ESR, Buitenhuis P, Giera M, Müller C, Pronk JT. A squalene-hopene cyclase in Schizosaccharomyces japonicus represents a eukaryotic adaptation to sterol-limited anaerobic environments. Proc Natl Acad Sci U S A 2021; 118:e2105225118. [PMID: 34353908 PMCID: PMC8364164 DOI: 10.1073/pnas.2105225118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biosynthesis of sterols, which are key constituents of canonical eukaryotic membranes, requires molecular oxygen. Anaerobic protists and deep-branching anaerobic fungi are the only eukaryotes in which a mechanism for sterol-independent growth has been elucidated. In these organisms, tetrahymanol, formed through oxygen-independent cyclization of squalene by a squalene-tetrahymanol cyclase, acts as a sterol surrogate. This study confirms an early report [C. J. E. A. Bulder, Antonie Van Leeuwenhoek, 37, 353-358 (1971)] that Schizosaccharomyces japonicus is exceptional among yeasts in growing anaerobically on synthetic media lacking sterols and unsaturated fatty acids. Mass spectrometry of lipid fractions of anaerobically grown Sch. japonicus showed the presence of hopanoids, a class of cyclic triterpenoids not previously detected in yeasts, including hop-22(29)-ene, hop-17(21)-ene, hop-21(22)-ene, and hopan-22-ol. A putative gene in Sch. japonicus showed high similarity to bacterial squalene-hopene cyclase (SHC) genes and in particular to those of Acetobacter species. No orthologs of the putative Sch. japonicus SHC were found in other yeast species. Expression of the Sch. japonicus SHC gene (Sjshc1) in Saccharomyces cerevisiae enabled hopanoid synthesis and stimulated anaerobic growth in sterol-free media, thus indicating that one or more of the hopanoids produced by SjShc1 could at least partially replace sterols. Use of hopanoids as sterol surrogates represents a previously unknown adaptation of eukaryotic cells to anaerobic growth. The fast anaerobic growth of Sch. japonicus in sterol-free media is an interesting trait for developing robust fungal cell factories for application in anaerobic industrial processes.
Collapse
Affiliation(s)
- Jonna Bouwknegt
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Sanne J Wiersma
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Raúl A Ortiz-Merino
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Eline S R Doornenbal
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Petrik Buitenhuis
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximillians University Munich, 81377 Munich, Germany
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands;
| |
Collapse
|
13
|
Gómez-Gil E, Franco A, Vázquez-Marín B, Prieto-Ruiz F, Pérez-Díaz A, Vicente-Soler J, Madrid M, Soto T, Cansado J. Specific Functional Features of the Cell Integrity MAP Kinase Pathway in the Dimorphic Fission Yeast Schizosaccharomyces japonicus. J Fungi (Basel) 2021; 7:jof7060482. [PMID: 34198697 PMCID: PMC8232204 DOI: 10.3390/jof7060482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Mitogen activated protein kinase (MAPK) signaling pathways execute essential functions in eukaryotic organisms by transducing extracellular stimuli into adaptive cellular responses. In the fission yeast model Schizosaccharomyces pombe the cell integrity pathway (CIP) and its core effector, MAPK Pmk1, play a key role during regulation of cell integrity, cytokinesis, and ionic homeostasis. Schizosaccharomyces japonicus, another fission yeast species, shows remarkable differences with respect to S. pombe, including a robust yeast to hyphae dimorphism in response to environmental changes. We show that the CIP MAPK module architecture and its upstream regulators, PKC orthologs Pck1 and Pck2, are conserved in both fission yeast species. However, some of S. pombe's CIP-related functions, such as cytokinetic control and response to glucose availability, are regulated differently in S. japonicus. Moreover, Pck1 and Pck2 antagonistically regulate S. japonicus hyphal differentiation through fine-tuning of Pmk1 activity. Chimeric MAPK-swapping experiments revealed that S. japonicus Pmk1 is fully functional in S. pombe, whereas S. pombe Pmk1 shows a limited ability to execute CIP functions and promote S. japonicus mycelial development. Our findings also suggest that a modified N-lobe domain secondary structure within S. japonicus Pmk1 has a major influence on the CIP signaling features of this evolutionarily diverged fission yeast.
Collapse
|
14
|
Vicente-Soler J, Soto T, Franco A, Cansado J, Madrid M. The Multiple Functions of Rho GTPases in Fission Yeasts. Cells 2021; 10:1422. [PMID: 34200466 PMCID: PMC8228308 DOI: 10.3390/cells10061422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023] Open
Abstract
The Rho family of GTPases represents highly conserved molecular switches involved in a plethora of physiological processes. Fission yeast Schizosaccharomyces pombe has become a fundamental model organism to study the functions of Rho GTPases over the past few decades. In recent years, another fission yeast species, Schizosaccharomyces japonicus, has come into focus offering insight into evolutionary changes within the genus. Both fission yeasts contain only six Rho-type GTPases that are spatiotemporally controlled by multiple guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and whose intricate regulation in response to external cues is starting to be uncovered. In the present review, we will outline and discuss the current knowledge and recent advances on how the fission yeasts Rho family GTPases regulate essential physiological processes such as morphogenesis and polarity, cellular integrity, cytokinesis and cellular differentiation.
Collapse
Affiliation(s)
| | | | | | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| |
Collapse
|
15
|
Seike T, Sakata N, Matsuda F, Furusawa C. Elevated Sporulation Efficiency in Fission Yeast Schizosaccharomyces japonicus Strains Isolated from Drosophila. J Fungi (Basel) 2021; 7:jof7050350. [PMID: 33947067 PMCID: PMC8146891 DOI: 10.3390/jof7050350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
The fission yeast Schizosaccharomyces japonicus, comprising S. japonicus var. japonicus and S. japonicus var. versatilis varieties, has unique characteristics such as striking hyphal growth not seen in other Schizosaccharomyces species; however, information on its diversity and evolution, in particular mating and sporulation, remains limited. Here we compared the growth and mating phenotypes of 17 wild strains of S. japonicus, including eight S. japonicus var. japonicus strains newly isolated from an insect (Drosophila). Unlike existing wild strains isolated from fruits/plants, the strains isolated from Drosophila sporulated at high frequency even under nitrogen-abundant conditions. In addition, one of the strains from Drosophila was stained by iodine vapor, although the type strain of S. japonicus var. japonicus is not stained. Sequence analysis further showed that the nucleotide and amino acid sequences of pheromone-related genes have diversified among the eight strains from Drosophila, suggesting crossing between S. japonicus cells of different genetic backgrounds occurs frequently in this insect. Much of yeast ecology remains unclear, but our findings suggest that insects such as Drosophila might be a good niche for mating and sporulation, and will provide a basis for the understanding of sporulation mechanisms via signal transduction, as well as the ecology and evolution of yeast.
Collapse
Affiliation(s)
- Taisuke Seike
- Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; (N.S.); (C.F.)
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan;
- Correspondence: ; Tel.: +81-6-6879-7433
| | - Natsue Sakata
- Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; (N.S.); (C.F.)
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; (N.S.); (C.F.)
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Papp LA, Ács-Szabó L, Póliska S, Miklós I. A modified culture medium and hyphae isolation method can increase quality of the RNA extracted from mycelia of a dimorphic fungal species. Curr Genet 2021; 67:823-830. [PMID: 33837814 PMCID: PMC8405466 DOI: 10.1007/s00294-021-01181-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
The capability of RNA isolation with good efficiency and high quality is essential for a downstream application such as RNA sequencing. It requires successful cell culturing and an effective RNA isolation method. Although effective methods are available, production of the homogenous mycelia and extraction of good-quality mycelial RNA from true invasive hyphae, which penetrated into the agar plates, are difficult. To overcome these problems, the aim of this study was to develop technical modifications which allow production of homogenous mycelial biomass without extra stimuli agents and improve quality of the RNA extracted from the fungal hyphae. Our alternative culture medium was suitable for production both yeast-phase cells and hyphae of the Schizosaccharomyces japonicus and other dimorphic species, such as the Candida albicans, Saccharomyces cerevisiae, and Jaminaea angkorensis. To improve quality of the mycelial RNA, we developed an isolation procedure of the hyphal tip, which eliminated the unnecessary vacuoles-containing parts of the hyphae. To increase RNA quantity, we used glass beads in the RNA extraction protocol to achieve stronger breaking of the mycelial walls. All these modifications can also be useful for researchers working with other dimorphic fungi and can contribute to the higher comparability of the transcriptional data coming from yeast-phase cells and hyphae or even from different species.
Collapse
Affiliation(s)
- László Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Lajos Ács-Szabó
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Ida Miklós
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| |
Collapse
|
17
|
Taheraly S, Ershov D, Dmitrieff S, Minc N. An image analysis method to survey the dynamics of polar protein abundance in the regulation of tip growth. J Cell Sci 2020; 133:133/22/jcs252064. [PMID: 33257499 DOI: 10.1242/jcs.252064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
Tip growth is critical for the lifestyle of many walled cells. In yeast and fungi, this process is typically associated with the polarized deposition of conserved tip factors, including landmarks, Rho GTPases, cytoskeleton regulators, and membrane and cell wall remodelers. Because tip growth speeds may vary extensively between life cycles or species, we asked whether the local amount of specific polar elements could determine or limit tip growth speeds. Using the model fission yeast, we developed a quantitative image analysis pipeline to dynamically correlate single tip elongation speeds and polar protein abundance in large data sets. We found that polarity landmarks are typically diluted by growth. In contrast, tip growth speed is positively correlated with the local amount of factors related to actin, secretion or cell wall remodeling, but, surprisingly, exhibits long saturation plateaus above certain concentrations of those factors. Similar saturation observed for Spitzenkörper components in much faster growing fungal hyphae suggests that elements independent of canonical surface remodelers may limit single tip growth. This work provides standardized methods and resources to decipher the complex mechanisms that control cell growth.This article has an associated First Person interview with Sarah Taheraly, joint first author of the paper.
Collapse
Affiliation(s)
- Sarah Taheraly
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Dmitry Ershov
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Serge Dmitrieff
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| |
Collapse
|
18
|
Bandyopadhyay S, Bhaduri S, Örd M, Davey NE, Loog M, Pryciak PM. Comprehensive Analysis of G1 Cyclin Docking Motif Sequences that Control CDK Regulatory Potency In Vivo. Curr Biol 2020; 30:4454-4466.e5. [PMID: 32976810 PMCID: PMC8009629 DOI: 10.1016/j.cub.2020.08.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022]
Abstract
Many protein-modifying enzymes recognize their substrates via docking motifs, but the range of functionally permissible motif sequences is often poorly defined. During eukaryotic cell division, cyclin-specific docking motifs help cyclin-dependent kinases (CDKs) phosphorylate different substrates at different stages, thus enforcing a temporally ordered series of events. In budding yeast, CDK substrates with Leu/Pro-rich (LP) docking motifs are recognized by Cln1/2 cyclins in late G1 phase, yet the key sequence features of these motifs were unknown. Here, we comprehensively analyze LP motif requirements in vivo by combining a competitive growth assay with deep mutational scanning. We quantified the effect of all single-residue replacements in five different LP motifs by using six distinct G1 cyclins from diverse fungi including medical and agricultural pathogens. The results uncover substantial tolerance for deviations from the consensus sequence, plus requirements at some positions that are contingent on the favorability of other motif residues. They also reveal the basis for variations in functional potency among wild-type motifs, and allow derivation of a quantitative matrix that predicts the strength of other candidate motif sequences. Finally, we find that variation in docking motif potency can advance or delay the time at which CDK substrate phosphorylation occurs, and thereby control the temporal ordering of cell cycle regulation. The overall results provide a general method for surveying viable docking motif sequences and quantifying their potency in vivo, and they reveal how variations in docking strength can tune the degree and timing of regulatory modifications.
Collapse
Affiliation(s)
- Sushobhana Bandyopadhyay
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Samyabrata Bhaduri
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mihkel Örd
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Peter M Pryciak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
19
|
Gu Y, Oliferenko S. The principles of cellular geometry scaling. Curr Opin Cell Biol 2020; 68:20-27. [PMID: 32950004 DOI: 10.1016/j.ceb.2020.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023]
Abstract
Cellular dimensions profoundly influence cellular physiology. For unicellular organisms, this has direct bearing on their ecology and evolution. The morphology of a cell is governed by scaling rules. As it grows, the ratio of its surface area to volume is expected to decrease. Similarly, if environmental conditions force proliferating cells to settle on different size optima, cells of the same type may exhibit size-dependent variation in cellular processes. In fungi, algae and plants where cells are surrounded by a rigid wall, division at smaller size often produces immediate changes in geometry, decreasing cell fitness. Here, we discuss how cells interpret their size, buffer against changes in shape and, if necessary, scale their polarity to maintain optimal shape at different cell volumes.
Collapse
Affiliation(s)
- Ying Gu
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
20
|
Summers DK, Perry DS, Rao B, Madhani HD. Coordinate genomic association of transcription factors controlled by an imported quorum sensing peptide in Cryptococcus neoformans. PLoS Genet 2020; 16:e1008744. [PMID: 32956370 PMCID: PMC7537855 DOI: 10.1371/journal.pgen.1008744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/06/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Qsp1 is a secreted quorum sensing peptide required for virulence of the fungal meningitis pathogen Cryptococcus neoformans. Qsp1 functions to control cell wall integrity in vegetatively growing cells and also functions in mating. Rather than acting on a cell surface receptor, Qsp1 is imported to act intracellularly via the predicted oligopeptide transporter Opt1. Here, we identify a transcription factor network as a target of Qsp1. Using whole-genome chromatin immunoprecipitation, we find Qsp1 controls the genomic associations of three transcription factors to genes whose outputs are regulated by Qsp1. One of these transcription factors, Cqs2, is also required for the action of Qsp1 during mating, indicating that it might be a shared proximal target of Qsp1. Consistent with this hypothesis, deletion of CQS2 impacts the binding of other network transcription factors specifically to Qsp1-regulated genes. These genetic and genomic studies illuminate mechanisms by which an imported peptide acts to modulate eukaryotic gene expression.
Collapse
Affiliation(s)
- Diana K. Summers
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Daniela S. Perry
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Beiduo Rao
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Hiten D. Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
- Chan-Zuckerberg Biohub, San Francisco, CA, United States of America
| |
Collapse
|
21
|
Fukunaga T, Tanaka N, Furumoto T, Nakakita S, Ohashi T, Higuchi Y, Maekawa H, Takegawa K. Characterization of N- and O-linked galactosylated oligosaccharides from fission yeast species. J Biosci Bioeng 2020; 130:128-136. [DOI: 10.1016/j.jbiosc.2020.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 10/24/2022]
|
22
|
Bhattacharjee R, Mangione MC, Wos M, Chen JS, Snider CE, Roberts-Galbraith RH, McDonald NA, Presti LL, Martin SG, Gould KL. DYRK kinase Pom1 drives F-BAR protein Cdc15 from the membrane to promote medial division. Mol Biol Cell 2020; 31:917-929. [PMID: 32101481 PMCID: PMC7185970 DOI: 10.1091/mbc.e20-01-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
In many organisms, positive and negative signals cooperate to position the division site for cytokinesis. In the rod-shaped fission yeast Schizosaccharomyces pombe, symmetric division is achieved through anillin/Mid1-dependent positive cues released from the central nucleus and negative signals from the DYRK-family polarity kinase Pom1 at cell tips. Here we establish that Pom1's kinase activity prevents septation at cell tips even if Mid1 is absent or mislocalized. We also find that Pom1 phosphorylation of F-BAR protein Cdc15, a major scaffold of the division apparatus, disrupts Cdc15's ability to bind membranes and paxillin, Pxl1, thereby inhibiting Cdc15's function in cytokinesis. A Cdc15 mutant carrying phosphomimetic versions of Pom1 sites or deletion of Cdc15 binding partners suppresses division at cell tips in cells lacking both Mid1 and Pom1 signals. Thus, inhibition of Cdc15-scaffolded septum formation at cell poles is a key Pom1 mechanism that ensures medial division.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - MariaSanta C. Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Marcin Wos
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Chloe E. Snider
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | | | - Nathan A. McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Libera Lo Presti
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| |
Collapse
|
23
|
Makarova M, Peter M, Balogh G, Glatz A, MacRae JI, Lopez Mora N, Booth P, Makeyev E, Vigh L, Oliferenko S. Delineating the Rules for Structural Adaptation of Membrane-Associated Proteins to Evolutionary Changes in Membrane Lipidome. Curr Biol 2020; 30:367-380.e8. [PMID: 31956022 PMCID: PMC6997885 DOI: 10.1016/j.cub.2019.11.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Membrane function is fundamental to life. Each species explores membrane lipid diversity within a genetically predefined range of possibilities. How membrane lipid composition in turn defines the functional space available for evolution of membrane-centered processes remains largely unknown. We address this fundamental question using related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus. We show that, unlike S. pombe that generates membranes where both glycerophospholipid acyl tails are predominantly 16-18 carbons long, S. japonicus synthesizes unusual "asymmetrical" glycerophospholipids where the tails differ in length by 6-8 carbons. This results in stiffer bilayers with distinct lipid packing properties. Retroengineered S. pombe synthesizing the S.-japonicus-type phospholipids exhibits unfolded protein response and downregulates secretion. Importantly, our protein sequence comparisons and domain swap experiments support the hypothesis that transmembrane helices co-evolve with membranes, suggesting that, on the evolutionary scale, changes in membrane lipid composition may necessitate extensive adaptation of the membrane-associated proteome.
Collapse
Affiliation(s)
- Maria Makarova
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Maria Peter
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Gabor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Attila Glatz
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - James I MacRae
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nestor Lopez Mora
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK
| | - Paula Booth
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK
| | - Eugene Makeyev
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Laszlo Vigh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
24
|
Gómez-Gil E, Franco A, Madrid M, Vázquez-Marín B, Gacto M, Fernández-Breis J, Vicente-Soler J, Soto T, Cansado J. Quorum sensing and stress-activated MAPK signaling repress yeast to hypha transition in the fission yeast Schizosaccharomyces japonicus. PLoS Genet 2019; 15:e1008192. [PMID: 31150379 PMCID: PMC6561576 DOI: 10.1371/journal.pgen.1008192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/12/2019] [Accepted: 05/13/2019] [Indexed: 01/14/2023] Open
Abstract
Quorum sensing (QS), a mechanism of microbial communication dependent on cell density, governs developmental decisions in many bacteria and in some pathogenic and non-pathogenic fungi including yeasts. In these simple eukaryotes this response is mediated by the release into the growth medium of quorum-sensing molecules (QSMs) whose concentration increases proportionally to the population density. To date the occurrence of QS is restricted to a few yeast species. We show that a QS mediated by the aromatic alcohols phenylethanol and tryptophol represses the dimorphic yeast to hypha differentiation in the fission yeast S. japonicus in response to an increased population density. In addition, the stress activated MAPK pathway (SAPK), which controls cell cycle progression and adaptation to environmental changes in this organism, constitutively represses yeast to hypha differentiation both at transcriptional and post-translational levels. Moreover, deletion of its main effectors Sty1 MAPK and Atf1 transcription factor partially suppressed the QS-dependent block of hyphal development under inducing conditions. RNAseq analysis showed that the expression of nrg1+, which encodes a putative ortholog of the transcription factor Nrg1 that represses yeast to hypha dimorphism in C. albicans, is downregulated both by QS and the SAPK pathway. Remarkably, Nrg1 may act in S. japonicus as an activator of hyphal differentiation instead of being a repressor. S. japonicus emerges as an attractive and amenable model organism to explore the QS mechanisms that regulate cellular differentiation in fungi. Quorum sensing is a relevant mechanism of communication dependent on population density that controls cell development and pathogenesis in microorganisms including fungi. We describe a quorum sensing mediated by the release of aromatic alcohols in the growth medium that blocks hyphal development in the fission yeast Schizosaccharomyces japonicus. This is the first description of such a mechanism in the fission yeast lineage, and confirms its expansion along Ascomycota fungi. The stress-responsive pathway (SAPK), which regulates fungal growth and differentiation, limits hyphal growth in S. japonicus in a constitutive fashion, and nonfunctional SAPK mutants are partially insensitive to quorum sensing and able to form hyphae in high cell density cultures. Nrg1, an important factor that blocks hyphal development in the pathogen Candida albicans, activates hyphal growth in S. japonicus, and its expression is counteracted by both quorum sensing and the SAPK pathway. Nrg1 function may thus have diverged evolutionary in this organism from being a repressor to an activator of hyphal development. S. japonicus emerges as a suitable model organism to explore the intricate mechanisms regulating fungal differentiation.
Collapse
Affiliation(s)
- Elisa Gómez-Gil
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
| | - Alejandro Franco
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
| | - Marisa Madrid
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
| | - Beatriz Vázquez-Marín
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
| | - Mariano Gacto
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
| | - Jesualdo Fernández-Breis
- Departamento de Informática y Sistemas, Facultad de Informática. Universidad de Murcia, Murcia, Spain
| | - Jero Vicente-Soler
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
- * E-mail: (TS); (JC)
| | - José Cansado
- Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de Murcia, Murcia, Spain
- * E-mail: (TS); (JC)
| |
Collapse
|
25
|
Gerganova V, Floderer C, Archetti A, Michon L, Carlini L, Reichler T, Manley S, Martin SG. Multi-phosphorylation reaction and clustering tune Pom1 gradient mid-cell levels according to cell size. eLife 2019; 8:45983. [PMID: 31050340 PMCID: PMC6555594 DOI: 10.7554/elife.45983] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/02/2019] [Indexed: 12/26/2022] Open
Abstract
Protein concentration gradients pattern developing organisms and single cells. In Schizosaccharomyces pombe rod-shaped cells, Pom1 kinase forms gradients with maxima at cell poles. Pom1 controls the timing of mitotic entry by inhibiting Cdr2, which forms stable membrane-associated nodes at mid-cell. Pom1 gradients rely on membrane association regulated by a phosphorylation-dephosphorylation cycle and lateral diffusion modulated by clustering. Using quantitative PALM imaging, we find individual Pom1 molecules bind the membrane too transiently to diffuse from pole to mid-cell. Instead, we propose they exchange within longer lived clusters forming the functional gradient unit. An allelic series blocking auto-phosphorylation shows that multi-phosphorylation shapes and buffers the gradient to control mid-cell levels, which represent the critical Cdr2-regulating pool. TIRF imaging of this cortical pool demonstrates more Pom1 overlaps with Cdr2 in short than long cells, consistent with Pom1 inhibition of Cdr2 decreasing with cell growth. Thus, the gradients modulate Pom1 mid-cell levels according to cell size. All organisms need to know how to arrange different cell types during the development of their organs and tissues. This information is provided by protein concentration patterns, or gradients, that tell cells how to behave based on where they are positioned. The same fundamental principles also work on a smaller scale. For example, although the rod-shaped yeast Schizosaccharomyces pombe is a single-celled organism, it uses protein concentration gradients to control its growth and timing of division. Before S. pombe cells divide, they need to check that they have reached the right size. Several mechanisms contribute to this information. One of them involves a concentration gradient of a protein known as Pom1, which is found on the cell membrane, with more protein at the cell extremities and less towards the middle. Pom1 serves to block the activity of Cdr2 – an enzyme that localizes to the cell middle and controls cell division. An open question has been whether Pom1 levels at the center drop as the cell grows, coordinating growth and division. One explanation for how the Pom1 gradient could be regulated is by the removal and addition of phosphate groups. At the cell’s tip, an enzyme removes phosphate groups from Pom1, causing it to bind to the membrane. As Pom1 diffuses along the membrane, it continuously ‘re-phosphorylates’ itself. This promotes Pom1 to gradually detach, restricting it from spreading along the membrane towards the cell middle. Another explanation is that clusters of Pom1, formed at the membrane, help establish a gradient by moving along the membrane at different rates: larger clusters, formed in high concentration areas, move slower than smaller clusters, causing levels of Pom1 to be higher at the tip, and lower towards the middle. Now, Gerganova et al. set out to find which of these two processes contributes more to shaping the Pom1 gradient, and determine where Pom1 acts on Cdr2. Gerganova et al. used super resolution microscopy to track individual Pom1 molecules inside yeast cells. This revealed two findings. First, that individual Pom1 molecules do not travel all the way from the cell tip to the center, but ‘hop’ between clusters as they move towards the middle. Second, in longer cells levels of Pom1 on the membrane drop at the center, where Pom1 encounters Cdr2. As a result, Cdr2 will come across higher levels of Pom1 in short cells, but low levels of Pom1 in long cells. This allows Pom1 to act as a measure of cell size, preventing short cells from dividing too soon. The role of clusters in creating gradients is not only relevant for yeast cell division. It could potentially apply to the gradients that organize cells and tissues in different organisms. Future work could examine whether similar principles apply in more complex systems.
Collapse
Affiliation(s)
- Veneta Gerganova
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Charlotte Floderer
- Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anna Archetti
- Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laetitia Michon
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lina Carlini
- Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thais Reichler
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Suliana Manley
- Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|