1
|
Murphy KJ, Reed DA, Trpceski M, Herrmann D, Timpson P. Quantifying and visualising the nuances of cellular dynamics in vivo using intravital imaging. Curr Opin Cell Biol 2021; 72:41-53. [PMID: 34091131 DOI: 10.1016/j.ceb.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
Intravital imaging is a powerful technology used to quantify and track dynamic changes in live cells and tissues within an intact environment. The ability to watch cell biology in real-time 'as it happens' has provided novel insight into tissue homeostasis, as well as disease initiation, progression and response to treatment. In this minireview, we highlight recent advances in the field of intravital microscopy, touching upon advances in awake versus anaesthesia-based approaches, as well as the integration of biosensors into intravital imaging. We also discuss current challenges that, in our opinion, need to be overcome to further advance the field of intravital imaging at the single-cell, subcellular and molecular resolution to reveal nuances of cell behaviour that can be targeted in complex disease settings.
Collapse
Affiliation(s)
- Kendelle J Murphy
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Daniel A Reed
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Michael Trpceski
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia.
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia.
| |
Collapse
|
2
|
Sanders JT, Freeman TF, Xu Y, Golloshi R, Stallard MA, Hill AM, San Martin R, Balajee AS, McCord RP. Radiation-induced DNA damage and repair effects on 3D genome organization. Nat Commun 2020; 11:6178. [PMID: 33268790 PMCID: PMC7710719 DOI: 10.1038/s41467-020-20047-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
The three-dimensional structure of chromosomes plays an important role in gene expression regulation and also influences the repair of radiation-induced DNA damage. Genomic aberrations that disrupt chromosome spatial domains can lead to diseases including cancer, but how the 3D genome structure responds to DNA damage is poorly understood. Here, we investigate the impact of DNA damage response and repair on 3D genome folding using Hi-C experiments on wild type cells and ataxia telangiectasia mutated (ATM) patient cells. We irradiate fibroblasts, lymphoblasts, and ATM-deficient fibroblasts with 5 Gy X-rays and perform Hi-C at 30 minutes, 24 hours, or 5 days after irradiation. We observe that 3D genome changes after irradiation are cell type-specific, with lymphoblastoid cells generally showing more contact changes than irradiated fibroblasts. However, all tested repair-proficient cell types exhibit an increased segregation of topologically associating domains (TADs). This TAD boundary strengthening after irradiation is not observed in ATM deficient fibroblasts and may indicate the presence of a mechanism to protect 3D genome structure integrity during DNA damage repair.
Collapse
Affiliation(s)
- Jacob T Sanders
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA
| | - Trevor F Freeman
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA
| | - Yang Xu
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA
| | - Mary A Stallard
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA
| | - Ashtyn M Hill
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA
| | - Rebeca San Martin
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA
| | - Adayabalam S Balajee
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, 37830, USA
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA. .,UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|