1
|
Halmi CA, Leonard CE, McIntosh AT, Taneyhill LA. N-cadherin facilitates trigeminal sensory neuron outgrowth and target tissue innervation. Development 2025; 152:dev204369. [PMID: 40260574 PMCID: PMC12070061 DOI: 10.1242/dev.204369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
The trigeminal ganglion emerges from the condensation of two distinct precursor cell populations, cranial placodes and neural crest. While its dual cellular origin is well understood, the molecules underlying its formation remain relatively obscure. Trigeminal ganglion assembly is mediated, in part, by neural cadherin (N-cadherin), which is initially expressed by placodal neurons and is required for their proper coalescence with neural crest cells. Axon outgrowth first occurs from placodal neurons, but as gangliogenesis proceeds, neural crest cells also differentiate into N-cadherin-expressing neurons, and both extend axons toward targets. However, the role of N-cadherin in axon outgrowth and target innervation has not been explored. Our data show that N-cadherin knockdown in chick trigeminal placode cells decreases trigeminal ganglion size, nerve growth and target innervation in vivo, and reduces neurite complexity of neural crest-derived neurons in vitro. Furthermore, blocking N-cadherin-mediated adhesion prevents axon extension in most placodal neurons in vitro. Collectively, these findings reveal cell- and non-cell autonomous functions for N-cadherin, highlighting its crucial role in mediating reciprocal interactions between neural crest- and placode-derived neurons throughout trigeminal ganglion development.
Collapse
Affiliation(s)
- Caroline A. Halmi
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Carrie E. Leonard
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Alec T. McIntosh
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Lisa A. Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Halmi CA, Leonard CE, McIntosh AT, Taneyhill LA. N-cadherin facilitates trigeminal sensory neuron outgrowth and target tissue innervation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.20.594965. [PMID: 38826314 PMCID: PMC11142107 DOI: 10.1101/2024.05.20.594965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The trigeminal ganglion emerges from the condensation of two distinct precursor cell populations, cranial placodes and neural crest. While its dual cellular origin is well understood, the molecules underlying its formation remain relatively obscure. Trigeminal ganglion assembly is mediated, in part, by neural cadherin (N-cadherin), which is initially expressed by placodal neurons and required for their proper coalescence with neural crest cells. Axon outgrowth first occurs from placodal neurons, but as gangliogenesis proceeds, neural crest cells also differentiate into N-cadherin-expressing neurons, and both extend axons toward targets. However, the role of N-cadherin in axon outgrowth and target innervation has not been explored. Our data show that N-cadherin knockdown in chick trigeminal placode cells decreases trigeminal ganglion size, nerve growth, and target innervation in vivo , and reduces neurite complexity of neural crest-derived neurons in vitro. Furthermore, blocking N-cadherin-mediated adhesion prevents axon extension in most placodal neurons in vitro . Collectively, these findings reveal cell- and non-cell autonomous functions for N-cadherin, highlighting its critical role in mediating reciprocal interactions between neural crest- and placode-derived neurons throughout trigeminal ganglion development.
Collapse
|
3
|
Chandrasekaran A, Graham K, Stachowiak JC, Rangamani P. Kinetic trapping organizes actin filaments within liquid-like protein droplets. Nat Commun 2024; 15:3139. [PMID: 38605007 PMCID: PMC11009352 DOI: 10.1038/s41467-024-46726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Several actin-binding proteins (ABPs) phase separate to form condensates capable of curating the actin network shapes. Here, we use computational modeling to understand the principles of actin network organization within VASP condensate droplets. Our simulations reveal that the different actin shapes, namely shells, rings, and mixture states are highly dependent on the kinetics of VASP-actin interactions, suggesting that they arise from kinetic trapping. Specifically, we show that reducing the residence time of VASP on actin filaments reduces degree of bundling, thereby promoting assembly of shells rather than rings. We validate the model predictions experimentally using a VASP-mutant with decreased bundling capability. Finally, we investigate the ring opening within deformed droplets and found that the sphere-to-ellipsoid transition is favored under a wide range of filament lengths while the ellipsoid-to-rod transition is only permitted when filaments have a specific range of lengths. Our findings highlight key mechanisms of actin organization within phase-separated ABPs.
Collapse
Affiliation(s)
- Aravind Chandrasekaran
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093-0411, USA
| | - Kristin Graham
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093-0411, USA.
| |
Collapse
|
4
|
Fang HY, Forghani R, Clarke A, McQueen PG, Chandrasekaran A, O’Neill KM, Losert W, Papoian GA, Giniger E. Enabled primarily controls filopodial morphology, not actin organization, in the TSM1 growth cone in Drosophila. Mol Biol Cell 2023; 34:ar83. [PMID: 37223966 PMCID: PMC10398877 DOI: 10.1091/mbc.e23-01-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Ena/VASP proteins are processive actin polymerases that are required throughout animal phylogeny for many morphogenetic processes, including axon growth and guidance. Here we use in vivo live imaging of morphology and actin distribution to determine the role of Ena in promoting the growth of the TSM1 axon of the Drosophila wing. Altering Ena activity causes stalling and misrouting of TSM1. Our data show that Ena has a substantial impact on filopodial morphology in this growth cone but exerts only modest effects on actin distribution. This is in contrast to the main regulator of Ena, Abl tyrosine kinase, which was shown previously to have profound effects on actin and only mild effects on TSM1 growth cone morphology. We interpret these data as suggesting that the primary role of Ena in this axon may be to link actin to the morphogenetic processes of the plasma membrane, rather than to regulate actin organization itself. These data also suggest that a key role of Ena, acting downstream of Abl, may be to maintain consistent organization and reliable evolution of growth cone structure, even as Abl activity varies in response to guidance cues in the environment.
Collapse
Affiliation(s)
- Hsiao Yu Fang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Rameen Forghani
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Akanni Clarke
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Philip G. McQueen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Aravind Chandrasekaran
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20752
| | - Kate M. O’Neill
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Institute for Physical Sciences and Department of Physics, University of Maryland, College Park, MD 20752
| | - Wolfgang Losert
- Institute for Physical Sciences and Department of Physics, University of Maryland, College Park, MD 20752
| | - Garegin A. Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20752
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
5
|
Dumoulin A, Stoeckli ET. Looking for Guidance - Models and Methods to Study Axonal Navigation. Neuroscience 2023; 508:30-39. [PMID: 35940454 DOI: 10.1016/j.neuroscience.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/17/2023]
Abstract
The molecular mechanisms of neural circuit formation have been of interest to Santiago Ramón y Cajal and thousands of neuroscientists sharing his passion for neural circuits ever since. Cajal was a brilliant observer and taught us about the connections and the morphology of neurons in the adult and developing nervous system. Clearly, we will not learn about molecular mechanisms by just looking at brain sections or cells in culture. Technically, we had to come a long way to today's possibilities that allow us to perturb target gene expression and watch the consequences of our manipulations on navigating axons in situ. In this review, we summarize landmark steps towards modern live-imaging approaches used to study the molecular basis of axon guidance.
Collapse
Affiliation(s)
- Alexandre Dumoulin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Esther T Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
6
|
Chandrasekaran A, Clarke A, McQueen P, Fang HY, Papoian GA, Giniger E. Computational simulations reveal that Abl activity controls cohesiveness of actin networks in growth cones. Mol Biol Cell 2022; 33:ar92. [PMID: 35857718 PMCID: PMC9582807 DOI: 10.1091/mbc.e21-11-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive studies of growing axons have revealed many individual components and protein interactions that guide neuronal morphogenesis. Despite this, however, we lack any clear picture of the emergent mechanism by which this nanometer-scale biochemistry generates the multimicron-scale morphology and cell biology of axon growth and guidance in vivo. To address this, we studied the downstream effects of the Abl signaling pathway using a computer simulation software (MEDYAN) that accounts for mechanochemical dynamics of active polymers. Previous studies implicate two Abl effectors, Arp2/3 and Enabled, in Abl-dependent axon guidance decisions. We now find that Abl alters actin architecture primarily by activating Arp2/3, while Enabled plays a more limited role. Our simulations show that simulations mimicking modest levels of Abl activity bear striking similarity to actin profiles obtained experimentally from live imaging of actin in wild-type axons in vivo. Using a graph theoretical filament-filament contact analysis, moreover, we find that networks mimicking hyperactivity of Abl (enhanced Arp2/3) are fragmented into smaller domains of actin that interact weakly with each other, consistent with the pattern of actin fragmentation observed upon Abl overexpression in vivo. Two perturbative simulations further confirm that high-Arp2/3 actin networks are mechanically disconnected and fail to mount a cohesive response to perturbation. Taken together, these data provide a molecular-level picture of how the large-scale organization of the axonal cytoskeleton arises from the biophysics of actin networks.
Collapse
Affiliation(s)
- Aravind Chandrasekaran
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| | - Akanni Clarke
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine/National Institutes of Health Graduate Partnerships Program, Washington, DC 20037
| | - Philip McQueen
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Hsiao Yu Fang
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| | - Garegin A. Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Edward Giniger
- National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892
| |
Collapse
|
7
|
Chandrasekaran A, Giniger E, Papoian GA. Nucleation causes an actin network to fragment into multiple high-density domains. Biophys J 2022; 121:3200-3212. [PMID: 35927959 PMCID: PMC9463697 DOI: 10.1016/j.bpj.2022.07.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 07/28/2022] [Indexed: 11/02/2022] Open
Abstract
Actin networks rely on nucleation mechanisms to generate new filaments because spontaneous nucleation is kinetically disfavored. Branching nucleation of actin filaments by actin-related protein (Arp2/3), in particular, is critical for actin self-organization. In this study, we use the simulation platform for active matter MEDYAN to generate 2000 s long stochastic trajectories of actin networks, under varying Arp2/3 concentrations, in reaction volumes of biologically meaningful size (>20 μm3). We find that the dynamics of Arp2/3 increase the abundance of short filaments and increases network treadmilling rate. By analyzing the density fields of F-actin, we find that at low Arp2/3 concentrations, F-actin is organized into a single connected and contractile domain, while at elevated Arp2/3 levels (10 nM and above), such high-density actin domains fragment into smaller domains spanning a wide range of volumes. These fragmented domains are extremely dynamic, continuously merging and splitting, owing to the high treadmilling rate of the underlying actin network. Treating the domain dynamics as a drift-diffusion process, we find that the fragmented state is stochastically favored, and the network state slowly drifts toward the fragmented state with considerable diffusion (variability) in the number of domains. We suggest that tuning the Arp2/3 concentration enables cells to transition from a globally coherent cytoskeleton, whose response involves the entire cytoplasmic network, to a fragmented cytoskeleton, where domains can respond independently to locally varying signals.
Collapse
Affiliation(s)
- Aravind Chandrasekaran
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland; National Institutes of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Edward Giniger
- National Institutes of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Garegin A Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland; Institute for Physical Science and Technology, University of Maryland, College Park, Maryland.
| |
Collapse
|
8
|
Han X, Su Y, White H, O'Neill KM, Morgan NY, Christensen R, Potarazu D, Vishwasrao HD, Xu S, Sun Y, Huang SY, Moyle MW, Dai Q, Pommier Y, Giniger E, Albrecht DR, Probst R, Shroff H. A polymer index-matched to water enables diverse applications in fluorescence microscopy. LAB ON A CHIP 2021; 21:1549-1562. [PMID: 33629685 PMCID: PMC8058278 DOI: 10.1039/d0lc01233e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We demonstrate diffraction-limited and super-resolution imaging through thick layers (tens-hundreds of microns) of BIO-133, a biocompatible, UV-curable, commercially available polymer with a refractive index (RI) matched to water. We show that cells can be directly grown on BIO-133 substrates without the need for surface passivation and use this capability to perform extended time-lapse volumetric imaging of cellular dynamics 1) at isotropic resolution using dual-view light-sheet microscopy, and 2) at super-resolution using instant structured illumination microscopy. BIO-133 also enables immobilization of 1) Drosophila tissue, allowing us to track membrane puncta in pioneer neurons, and 2) Caenorhabditis elegans, which allows us to image and inspect fine neural structure and to track pan-neuronal calcium activity over hundreds of volumes. Finally, BIO-133 is compatible with other microfluidic materials, enabling optical and chemical perturbation of immobilized samples, as we demonstrate by performing drug and optogenetic stimulation on cells and C. elegans.
Collapse
Affiliation(s)
- Xiaofei Han
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA. and Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA. and Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hamilton White
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA. and Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Kate M O'Neill
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA and Institute for Physical Science and Technology, University of Maryland College Park, College Park, MD 20742, USA
| | - Nicole Y Morgan
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Christensen
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Deepika Potarazu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen Xu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shar-Yin Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark W Moyle
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dirk R Albrecht
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA. and Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Roland Probst
- ACUITYnano, Innovation in Biomedical Imaging, North Bethesda, MD 20850, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA. and Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA and Marine Biological Laboratory Fellows Program, Woods Hole, MA 02543, USA
| |
Collapse
|
9
|
Marquilly C, Busto GU, Leger BS, Boulanger A, Giniger E, Walker JA, Fradkin LG, Dura JM. Htt is a repressor of Abl activity required for APP-induced axonal growth. PLoS Genet 2021; 17:e1009287. [PMID: 33465062 PMCID: PMC7845969 DOI: 10.1371/journal.pgen.1009287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/29/2021] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
Huntington’s disease is a progressive autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine tract at the N-terminus of a large cytoplasmic protein. The Drosophila huntingtin (htt) gene is widely expressed during all developmental stages from embryos to adults. However, Drosophila htt mutant individuals are viable with no obvious developmental defects. We asked if such defects could be detected in htt mutants in a background that had been genetically sensitized to reveal cryptic developmental functions. Amyloid precursor protein (APP) is linked to Alzheimer’s disease. Appl is the Drosophila APP ortholog and Appl signaling modulates axon outgrowth in the mushroom bodies (MBs), the learning and memory center in the fly, in part by recruiting Abl tyrosine kinase. Here, we find that htt mutations suppress axon outgrowth defects of αβ neurons in Appl mutant MB by derepressing the activity of Abl. We show that Abl is required in MB αβ neurons for their axon outgrowth. Importantly, both Abl overexpression and lack of expression produce similar phenotypes in the MBs, indicating the necessity of tightly regulating Abl activity. We find that Htt behaves genetically as a repressor of Abl activity, and consistent with this, in vivo FRET-based measurements reveal a significant increase in Abl kinase activity in the MBs when Htt levels are reduced. Thus, Appl and Htt have essential but opposing roles in MB development, promoting and suppressing Abl kinase activity, respectively, to maintain the appropriate intermediate level necessary for axon growth. Understanding the normal physiological roles of proteins involved in neurodegenerative diseases can provide significant insight into disease mechanisms. Drosophila offers a powerful system in which to ask these fundamental questions. Both Htt, related to Huntington’s disease, and Appl, related to Alzheimer’s disease, have well-conserved single orthologs in the fly genome. Appl has been shown to be a conserved modulator of a Wnt-PCP signaling pathway required for axon outgrowth in the mushroom body (MB) in the Drosophila brain. However, roles for Htt in fly brain development have not been reported. Unexpectedly, we found that htt mutations suppress the axon outgrowth defects of Appl mutants in the MB, indicating a link between these two neurodegenerative proteins and a cryptic role of Htt during development. Abl tyrosine kinase is a downstream effector of the Appl receptor, and we show here that Abl is also required for MB axon outgrowth. Importantly, Abl activity must be tightly regulated as evidenced by our observations that both under and overexpression of Abl result in similar axonal defects. We demonstrate that Htt is an inhibitor of Abl activity and provide evidence that the phenotypic rescue of αβ axons in Appl mutants by reducing htt is mediated by the restoration of proper levels of Abl signaling. These data, therefore, suggest that Appl and Htt act antagonistically to maintain an optimal balance of activation and inhibition of Abl, and thereby promote the growth of MB αβ axons.
Collapse
Affiliation(s)
- Claire Marquilly
- IGH, Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Germain U. Busto
- IGH, Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Brittany S. Leger
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ana Boulanger
- IGH, Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Edward Giniger
- Intramural Research Program, NINDS, NIH, Bethesda, Maryland, United States of America
| | - James A. Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Lee G. Fradkin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jean-Maurice Dura
- IGH, Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
10
|
Cheong HSJ, Nona M, Guerra SB, VanBerkum MF. The first quarter of the C-terminal domain of Abelson regulates the WAVE regulatory complex and Enabled in axon guidance. Neural Dev 2020; 15:7. [PMID: 32359359 PMCID: PMC7196227 DOI: 10.1186/s13064-020-00144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background Abelson tyrosine kinase (Abl) plays a key role in axon guidance in linking guidance receptors to actin dynamics. The long C-terminal domain (CTD) of Drosophila Abl is important for this role, and previous work identified the ‘first quarter’ (1Q) of the CTD as essential. Here, we link the physical interactions of 1Q binding partners to Abl’s function in axon guidance. Methods Protein binding partners of 1Q were identified by GST pulldown and mass spectrometry, and validated using axon guidance assays in the embryonic nerve cord and motoneurons. The role of 1Q was assessed genetically, utilizing a battery of Abl transgenes in combination with mutation or overexpression of the genes of pulled down proteins, and their partners in actin dynamics. The set of Abl transgenes had the following regions deleted: all of 1Q, each half of 1Q (‘eighths’, 1E and 2E) or a PxxP motif in 2E, which may bind SH3 domains. Results GST pulldown identified Hem and Sra-1 as binding partners of 1Q, and our genetic analyses show that both proteins function with Abl in axon guidance, with Sra-1 likely interacting with 1Q. As Hem and Sra-1 are part of the actin-polymerizing WAVE regulatory complex (WRC), we extended our analyses to Abi and Trio, which interact with Abl and WRC members. Overall, the 1Q region (and especially 2E and its PxxP motif) are important for Abl’s ability to work with WRC in axon guidance. These areas are also important for Abl’s ability to function with the actin regulator Enabled. In comparison, 1E contributes to Abl function with the WRC at the midline, but less so with Enabled. Conclusions The 1Q region, and especially the 2E region with its PxxP motif, links Abl with the WRC, its regulators Trio and Abi, and the actin regulator Ena. Removing 1E has specific effects suggesting it may help modulate Abl’s interaction with the WRC or Ena. Thus, the 1Q region of Abl plays a key role in regulating actin dynamics during axon guidance.
Collapse
Affiliation(s)
| | - Mark Nona
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | | | | |
Collapse
|
11
|
Clarke A, McQueen PG, Fang HY, Kannan R, Wang V, McCreedy E, Wincovitch S, Giniger E. Abl signaling directs growth of a pioneer axon in Drosophila by shaping the intrinsic fluctuations of actin. Mol Biol Cell 2020; 31:466-477. [PMID: 31967946 PMCID: PMC7185895 DOI: 10.1091/mbc.e19-10-0564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The fundamental problem in axon growth and guidance is understanding how cytoplasmic signaling modulates the cytoskeleton to produce directed growth cone motility. Live imaging of the TSM1 axon of the developing Drosophila wing has shown that the essential role of the core guidance signaling molecule, Abelson (Abl) tyrosine kinase, is to modulate the organization and spatial localization of actin in the advancing growth cone. Here, we dissect in detail the properties of that actin organization and its consequences for growth cone morphogenesis and motility. We show that advance of the actin mass in the distal axon drives the forward motion of the dynamic filopodial domain that defines the growth cone. We further show that Abl regulates both the width of the actin mass and its internal organization, spatially biasing the intrinsic fluctuations of actin to achieve net advance of the actin, and thus of the dynamic filopodial domain of the growth cone, while maintaining the essential coherence of the actin mass itself. These data suggest a model whereby guidance signaling systematically shapes the intrinsic, stochastic fluctuations of actin in the growth cone to produce axon growth and guidance.
Collapse
Affiliation(s)
- Akanni Clarke
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.,Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine/National Institutes of Health Graduate Partnerships Program, Washington, DC 20037
| | - Philip G McQueen
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Hsiao Yu Fang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Ramakrishnan Kannan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Victor Wang
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Evan McCreedy
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Wincovitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
12
|
Clarke A, McQueen PG, Fang HY, Kannan R, Wang V, McCreedy E, Buckley T, Johannessen E, Wincovitch S, Giniger E. Dynamic morphogenesis of a pioneer axon in Drosophila and its regulation by Abl tyrosine kinase. Mol Biol Cell 2020; 31:452-465. [PMID: 31967935 PMCID: PMC7185889 DOI: 10.1091/mbc.e19-10-0563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The fundamental problem in axon growth and guidance is to understand how cytoplasmic signaling modulates the cytoskeleton to produce directed growth cone motility. We here dissect this process using live imaging of the TSM1 axon of the developing Drosophila wing. We find that the growth cone is almost purely filopodial, and that it extends by a protrusive mode of growth. Quantitative analysis reveals two separate groups of growth cone properties that together account for growth cone structure and dynamics. The core morphological features of the growth cone are strongly correlated with one another and define two discrete morphs. Genetic manipulation of a critical mediator of axon guidance signaling, Abelson (Abl) tyrosine kinase, shows that while Abl weakly modulates the ratio of the two morphs it does not greatly change their properties. Rather, Abl primarily regulates the second group of properties, which report the organization and distribution of actin in the growth cone and are coupled to growth cone velocity. Other experiments dissect the nature of that regulation of actin organization and how it controls the spatial localization of filopodial dynamics and thus axon extension. Together, these observations suggest a novel, probabilistic mechanism by which Abl biases the stochastic fluctuations of growth cone actin to direct axon growth and guidance.
Collapse
Affiliation(s)
- Akanni Clarke
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.,Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine/NIH Graduate Partnership Program, Washington, DC 20037
| | - Philip G McQueen
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Hsiao Yu Fang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Ramakrishnan Kannan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Victor Wang
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Evan McCreedy
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Tyler Buckley
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Erika Johannessen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Wincovitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|