1
|
Deraniyagala AS, Maier W, Parra M, Nanista E, Sowunmi DO, Hassan M, Chasen N, Sharma S, Lechtreck KF, Cole ES, Bernardes N, Chook YM, Gaertig J. Importin-9 and a TPR domain protein MpH drive periodic patterning of ciliary arrays in Tetrahymena. J Cell Biol 2025; 224:e202409057. [PMID: 40152790 PMCID: PMC11951933 DOI: 10.1083/jcb.202409057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
We explored how the number of structures is determined in an intracellular organelle series. In Tetrahymena, the oral apparatus contains three diagonal ciliary rows: M1, M2, and M3. During development, the M rows emerge by sequential segmentation of a group of basal bodies, starting with the longest and most anterior M1 and ending with the shortest and most posterior M3. The mpD-1 and mpH-1 alleles increase and decrease the number of M rows, respectively. We identify MpH as a TPR protein and MpD as an importin-9. Both proteins localize to the M rows and form concentration gradients. MpH is a row elongation factor whose loss shortens all M rows and often prevents the formation of M3. MpD limits row initiation after the emergence of M2. MpD could be a part of a negative feedback loop that limits row initiation when M1 assembly is properly advanced. We conclude that the forming oral apparatus has properties of a semi-autonomous intracellular developmental field.
Collapse
Affiliation(s)
| | - Wolfgang Maier
- Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Mireya Parra
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Elise Nanista
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | | | - Michael Hassan
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Nathan Chasen
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Sunita Sharma
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Karl F. Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Eric S. Cole
- Biology Department, St. Olaf College, Northfield, MN, USA
| | - Natalia Bernardes
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuh Min Chook
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Powell AM, Williams AE, Ables ET. Fusome morphogenesis is sufficient to promote female germline stem cell self-renewal in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642432. [PMID: 40161740 PMCID: PMC11952372 DOI: 10.1101/2025.03.10.642432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Many tissue-resident stem cells are retained through asymmetric cell division, a process that ensures stem cell self-renewal through each mitotic cell cycle. Asymmetric organelle distribution has been proposed as a mechanism by which stem cells are marked for long-term retention; however, it is not clear whether biased organelle localization is a cause or an effect of asymmetric division. In Drosophila females, an endoplasmic reticulum-like organelle called the fusome is continually regenerated in germline stem cells (GSCs) and associated with GSC division. Here, we report that the β-importin Tnpo-SR is essential for fusome regeneration. Depletion of Tnpo-SR disrupts cytoskeletal organization during interphase and nuclear membrane remodeling during mitosis. Tnpo-SR does not localize to microtubules, centrosomes, or the fusome, suggesting that its role in maintaining these processes is indirect. Despite this, we find that restoring fusome morphogenesis in Tnpo-SR-depleted GSCs is sufficient to rescue GSC maintenance and cell cycle progression. We conclude that Tnpo-SR functionally fusome regeneration to cell cycle progression, supporting the model that asymmetric rebuilding of fusome promotes maintenance of GSC identity and niche retention.
Collapse
Affiliation(s)
- Amanda M. Powell
- Department of Biology, East Carolina University, Greenville, NC, 27858
| | - Anna E. Williams
- Department of Biology, East Carolina University, Greenville, NC, 27858
- Current address: Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA, 30322
| | | |
Collapse
|
3
|
Currin-Ross D, Al-Izzi SC, Noordstra I, Yap AS, Morris RG. Advecting scaffolds: Controlling the remodeling of actomyosin with anillin. Phys Rev E 2025; 111:024403. [PMID: 40103056 DOI: 10.1103/physreve.111.024403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/13/2024] [Indexed: 03/20/2025]
Abstract
We propose and analyze an active hydrodynamic theory that characterizes the effects of the scaffold protein anillin. Anillin is found at major sites of cortical activity, such as adherens junctions and the cytokinetic furrow, where the canonical regulator of actomyosin remodeling is the small GTPase, RhoA. RhoA acts via intermediary "effectors" to increase both the rates of activation of myosin motors and the polymerization of actin filaments. Anillin has been shown to scaffold this action of RhoA-improving critical rates in the signaling pathway without altering the essential biochemistry-but its contribution to the wider spatiotemporal organization of the cortical cytoskeleton remains poorly understood. Here we combine analytics and numerics to show how anillin can nontrivially regulate the cytoskeleton at hydrodynamic scales. At short times, anillin can amplify or dampen existing contractile instabilities, as well as alter the parameter ranges over which they occur. At long times, it can change both the size and speed of steady-state traveling pulses. The primary mechanism that underpins these behaviors is established to be the advection of anillin by myosin II motors, with the specifics relying on the values of two coupling parameters. These codify anillin's effect on local signaling kinetics and can be traced back to its interaction with the acidic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP_{2}), thereby establishing a putative connection between actomyosin remodeling and membrane composition.
Collapse
Affiliation(s)
- Denni Currin-Ross
- The University of Queensland, Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, Brisbane 4000, Australia
- UNSW, School of Physics, Sydney, NSW 2052, Australia
- UNSW, EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, Sydney 2052, Australia
| | - Sami C Al-Izzi
- UNSW, School of Physics, Sydney, NSW 2052, Australia
- UNSW, ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, Node, Sydney, NSW 2052, Australia
| | - Ivar Noordstra
- The University of Queensland, Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, Brisbane 4000, Australia
| | - Alpha S Yap
- The University of Queensland, Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, Brisbane 4000, Australia
| | - Richard G Morris
- UNSW, School of Physics, Sydney, NSW 2052, Australia
- UNSW, EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, Sydney 2052, Australia
- UNSW, ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, Node, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Martinez Barrera S, Hatchell E, Byrum SD, Mackintosh SG, Kozubowski L. Quantitative analysis of septin Cdc10 & Cdc3-associated proteome during stress response in the fungal pathogen Cryptococcus neoformans. PLoS One 2024; 19:e0313444. [PMID: 39689097 DOI: 10.1371/journal.pone.0313444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/23/2024] [Indexed: 12/19/2024] Open
Abstract
Cryptococcus neoformans is a pathogenic basidiomycetous yeast that primarily infects immunocompromised individuals. Fatal outcome of cryptococcosis depends on the ability of C. neoformans to sense and adapt to 37°C. A complex of conserved filament forming GTPases, called septins, composed of Cdc3, Cdc10, Cdc11, and Cdc12, assembles at the mother-bud neck in C. neoformans. Septins Cdc3 and Cdc12 are essential for proliferation of C. neoformans at 37°C and for virulence in the Galleria mellonella model of infection, presumably due to their requirement for septin complex formation, and the involvement in cytokinesis. However, how exactly Cdc3, and Cdc12 contribute to C. neoformans growth at 37°C remains unknown. Based on studies investigating roles of septins in Saccharomyces cerevisiae, septin complex at the mother-bud neck of C. neoformans is predicted to interact with proteins involved in cell cycle control, morphogenesis, and cytokinesis, but the septin-associated proteome in C. neoformans has not been investigated. Here, we utilized tandem mass spectrometry to define C. neoformans proteins that associate with either Cdc3 or Cdc10 at ∼25°C or after the shift to 37°C. Our findings unveil a diverse array of septin-associated proteins, highlighting potential roles of septins in cell division, and stress response. Two proteins, identified as associated with both Cdc3 and Cdc10, the actin-binding protein profilin, which was detected at both temperatures, and ATP-binding multi-drug transporter Afr1, which was detected exclusively at 37°C, were further confirmed by co-immunoprecipitation. We also confirmed that association of Cdc3 with Afr1 was enhanced at 37°C. Upon shift to 37°C, septins Cdc3 and Cdc10 exhibited altered localization and Cdc3 partially co-localized with Afr1. In addition, we also investigated changes to levels of individual C. neoformans proteins upon shift from ∼25 to 37°C in exponentially grown culture and when cells entered stationary phase at ∼25°C. Our study reveals changes to C. neoformans proteome associated with heat and nutrient deprivation stresses and provides a landscape of septin-associated C. neoformans proteome, which will facilitate elucidating the biology of septins and mechanisms of stress response in this fungal pathogen.
Collapse
Affiliation(s)
- Stephani Martinez Barrera
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| | - Emma Hatchell
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| |
Collapse
|
5
|
Tran AT, Wisniewski EO, Mistriotis P, Stoletov K, Parlani M, Amitrano A, Ifemembi B, Lee SJ, Bera K, Zhang Y, Tuntithavornwat S, Afthinos A, Kiepas A, Jamieson JJ, Zuo Y, Habib D, Wu PH, Martin SS, Gerecht S, Gu L, Lewis JD, Kalab P, Friedl P, Konstantopoulos K. Cytoplasmic accumulation and plasma membrane association of anillin and Ect2 promote confined migration and invasion. RESEARCH SQUARE 2024:rs.3.rs-3640969. [PMID: 38260442 PMCID: PMC10802709 DOI: 10.21203/rs.3.rs-3640969/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cells migrating in confinement experience mechanical challenges whose consequences on cell migration machinery remain only partially understood. Here, we demonstrate that a pool of the cytokinesis regulatory protein anillin is retained during interphase in the cytoplasm of different cell types. Confinement induces recruitment of cytoplasmic anillin to plasma membrane at the poles of migrating cells, which is further enhanced upon nuclear envelope (NE) rupture(s). Rupture events also enable the cytoplasmic egress of predominantly nuclear RhoGEF Ect2. Anillin and Ect2 redistributions scale with microenvironmental stiffness and confinement, and are observed in confined cells in vitro and in invading tumor cells in vivo. Anillin, which binds actomyosin at the cell poles, and Ect2, which activates RhoA, cooperate additively to promote myosin II contractility, and promote efficient invasion and extravasation. Overall, our work provides a mechanistic understanding of how cytokinesis regulators mediate RhoA/ROCK/myosin II-dependent mechanoadaptation during confined migration and invasive cancer progression.
Collapse
Affiliation(s)
- Avery T. Tran
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Emily O. Wisniewski
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | | | - Maria Parlani
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alice Amitrano
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Brent Ifemembi
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Soontorn Tuntithavornwat
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Alexandros Afthinos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - John J. Jamieson
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Yi Zuo
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Daniel Habib
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Luo Gu
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
| | - Peter Friedl
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Genitourinary Medicine, UT MD Anderson Cancer Center, Houston TX, 77030 USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore MD, 21218, USA
- Department of Oncology, The Johns Hopkins University, Baltimore MD, 21205, USA
| |
Collapse
|
6
|
Wang C, Ding J, Wei Q, Du S, Gong X, Chew TG. Mechanosensitive accumulation of non-muscle myosin IIB during mitosis requires its translocation activity. iScience 2023; 26:107773. [PMID: 37720093 PMCID: PMC10504539 DOI: 10.1016/j.isci.2023.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/02/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023] Open
Abstract
Non-muscle myosin II (NMII) is a force-generating mechanosensitive enzyme that responds to mechanical forces. NMIIs mechanoaccumulate at the cell cortex in response to mechanical forces. It is essential for cells to mechanically adapt to the physical environment, failure of which results in mitotic defects when dividing in confined environment. Much less is known about how NMII mechanoaccumulation is regulated during mitosis. We show that mitotic cells respond to compressive stress by promoting accumulation of active RhoA at the cell cortex as in interphase cells. RhoA mechanoresponse during mitosis activates and stabilizes NMIIB via ROCK signaling, leading to NMIIB mechanoaccumulation at the cell cortex. Using disease-related myosin II mutations, we found that NMIIB mechanoaccumulation requires its motor activity that translocates actin filaments, but not just its actin-binding function. Thus, the motor activity coordinates structural movement and nucleotide state changes to fine-tune actin-binding affinity optimal for NMIIs to generate and respond to forces.
Collapse
Affiliation(s)
- Chao Wang
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Jingjing Ding
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Qiaodong Wei
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shoukang Du
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Xiaobo Gong
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Gang Chew
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| |
Collapse
|
7
|
Lebedev M, Chan FY, Lochner A, Bellessem J, Osório DS, Rackles E, Mikeladze-Dvali T, Carvalho AX, Zanin E. Anillin forms linear structures and facilitates furrow ingression after septin and formin depletion. Cell Rep 2023; 42:113076. [PMID: 37665665 PMCID: PMC10548094 DOI: 10.1016/j.celrep.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
During cytokinesis, a contractile ring consisting of unbranched filamentous actin (F-actin) and myosin II constricts at the cell equator. Unbranched F-actin is generated by formin, and without formin no cleavage furrow forms. In Caenorhabditis elegans, depletion of septin restores furrow ingression in formin mutants. How the cleavage furrow ingresses without a detectable unbranched F-actin ring is unknown. We report that, in this setting, anillin (ANI-1) forms a meshwork of circumferentially aligned linear structures decorated by non-muscle myosin II (NMY-2). Analysis of ANI-1 deletion mutants reveals that its disordered N-terminal half is required for linear structure formation and sufficient for furrow ingression. NMY-2 promotes the circumferential alignment of the linear ANI-1 structures and interacts with various lipids, suggesting that NMY-2 links the ANI-1 network with the plasma membrane. Collectively, our data reveal a compensatory mechanism, mediated by ANI-1 linear structures and membrane-bound NMY-2, that promotes furrowing when unbranched F-actin polymerization is compromised.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anna Lochner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany
| | - Jennifer Bellessem
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Daniel S Osório
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisabeth Rackles
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Tamara Mikeladze-Dvali
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Esther Zanin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
8
|
Carim SC, Hickson GR. The Rho1 GTPase controls anillo-septin assembly to facilitate contractile ring closure during cytokinesis. iScience 2023; 26:106903. [PMID: 37378349 PMCID: PMC10291328 DOI: 10.1016/j.isci.2023.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/20/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Animal cell cytokinesis requires activation of the GTPase RhoA (Rho1 in Drosophila), which assembles an F-actin- and myosin II-dependent contractile ring (CR) at the equatorial plasma membrane. CR closure is poorly understood, but involves the multidomain scaffold protein, Anillin. Anillin binds many CR components including F-actin and myosin II (collectively actomyosin), RhoA and the septins. Anillin recruits septins to the CR but the mechanism is unclear. Live imaging of Drosophila S2 cells and HeLa cells revealed that the Anillin N-terminus, which scaffolds actomyosin, cannot recruit septins to the CR. Rather, septin recruitment required the ability of the Anillin C-terminus to bind Rho1-GTP and the presence of the Anillin PH domain, in a sequential mechanism occurring at the plasma membrane, independently of F-actin. Anillin mutations that blocked septin recruitment, but not actomyosin scaffolding, slowed CR closure and disrupted cytokinesis. Thus, CR closure requires coordination of two Rho1-dependent networks: actomyosin and anillo-septin.
Collapse
Affiliation(s)
- Sabrya C. Carim
- CHU Sainte-Justine Research Center, 3175 Chemin de la Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - Gilles R.X. Hickson
- CHU Sainte-Justine Research Center, 3175 Chemin de la Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
9
|
Ozugergin I, Piekny A. Diversity is the spice of life: An overview of how cytokinesis regulation varies with cell type. Front Cell Dev Biol 2022; 10:1007614. [PMID: 36420142 PMCID: PMC9676254 DOI: 10.3389/fcell.2022.1007614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Cytokinesis is required to physically cleave a cell into two daughters at the end of mitosis. Decades of research have led to a comprehensive understanding of the core cytokinesis machinery and how it is regulated in animal cells, however this knowledge was generated using single cells cultured in vitro, or in early embryos before tissues develop. This raises the question of how cytokinesis is regulated in diverse animal cell types and developmental contexts. Recent studies of distinct cell types in the same organism or in similar cell types from different organisms have revealed striking differences in how cytokinesis is regulated, which includes different threshold requirements for the structural components and the mechanisms that regulate them. In this review, we highlight these differences with an emphasis on pathways that are independent of the mitotic spindle, and operate through signals associated with the cortex, kinetochores, or chromatin.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
10
|
Husser MC, Ozugergin I, Resta T, Martin VJJ, Piekny AJ. Cytokinetic diversity in mammalian cells is revealed by the characterization of endogenous anillin, Ect2 and RhoA. Open Biol 2022; 12:220247. [PMID: 36416720 PMCID: PMC9683116 DOI: 10.1098/rsob.220247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytokinesis is required to physically separate the daughter cells at the end of mitosis. This crucial process requires the assembly and ingression of an actomyosin ring, which must occur with high fidelity to avoid aneuploidy and cell fate changes. Most of our knowledge of mammalian cytokinesis was generated using over-expressed transgenes in HeLa cells. Over-expression can introduce artefacts, while HeLa are cancerous human cells that have lost their epithelial identity, and the mechanisms controlling cytokinesis in these cells could be vastly different from other cell types. Here, we tagged endogenous anillin, Ect2 and RhoA with mNeonGreen and characterized their localization during cytokinesis for the first time in live human cells. Comparing anillin localization in multiple cell types revealed cytokinetic diversity with differences in the duration and symmetry of ring closure, and the timing of cortical recruitment. Our findings show that the breadth of anillin correlates with the rate of ring closure, and support models where cell size or ploidy affects the cortical organization, and intrinsic mechanisms control the symmetry of ring closure. This work highlights the need to study cytokinesis in more diverse cell types, which will be facilitated by the reagents generated for this study.
Collapse
Affiliation(s)
| | - Imge Ozugergin
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | - Tiziana Resta
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | - Vincent J. J. Martin
- Biology Department, Concordia University, Montreal, Quebec, Canada,Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada
| | - Alisa J. Piekny
- Biology Department, Concordia University, Montreal, Quebec, Canada,Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada,Center for Microscopy and Cellular Imaging, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Zheng X, Nie S, Feng WH. Regulation of antiviral immune response by African swine fever virus (ASFV). Virol Sin 2022; 37:157-167. [PMID: 35278697 PMCID: PMC9170969 DOI: 10.1016/j.virs.2022.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
African swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease with a high mortality approaching 100% in domestic pigs. ASF is an endemic in countries in sub-Saharan Africa. Now, it has been spreading to many countries, especially in Asia and Europe. Due to the fact that there is no commercial vaccine available for ASF to provide sustainable prevention, the disease has spread rapidly worldwide and caused great economic losses in swine industry. The knowledge gap of ASF virus (ASFV) pathogenesis and immune evasion is the main factor to limit the development of safe and effective ASF vaccines. Here, we will summarize the molecular mechanisms of how ASFV interferes with the host innate and adaptive immune responses. An in-depth understanding of ASFV immune evasion strategies will provide us with rational design of ASF vaccines.
Collapse
Affiliation(s)
- Xiaojie Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shengming Nie
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Ozugergin I, Mastronardi K, Law C, Piekny A. Diverse mechanisms regulate contractile ring assembly for cytokinesis in the two-cell Caenorhabditis elegans embryo. J Cell Sci 2022; 135:jcs258921. [PMID: 35022791 PMCID: PMC10660071 DOI: 10.1242/jcs.258921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022] Open
Abstract
Cytokinesis occurs at the end of mitosis as a result of the ingression of a contractile ring that cleaves the daughter cells. The core machinery regulating this crucial process is conserved among metazoans. Multiple pathways control ring assembly, but their contribution in different cell types is not known. We found that in the Caenorhabditis elegans embryo, AB and P1 cells fated to be somatic tissue and germline, respectively, have different cytokinesis kinetics supported by distinct myosin levels and organization. Through perturbation of RhoA or polarity regulators and the generation of tetraploid strains, we found that ring assembly is controlled by multiple fate-dependent factors that include myosin levels, and mechanisms that respond to cell size. Active Ran coordinates ring position with the segregating chromatids in HeLa cells by forming an inverse gradient with importins that control the cortical recruitment of anillin. We found that the Ran pathway regulates anillin in AB cells but functions differently in P1 cells. We propose that ring assembly delays in P1 cells caused by low myosin and Ran signaling coordinate the timing of ring closure with their somatic neighbors. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| | | | - Chris Law
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| |
Collapse
|
13
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
14
|
Molecular basis of functional exchangeability between ezrin and other actin-membrane associated proteins during cytokinesis. Exp Cell Res 2021; 403:112600. [PMID: 33862101 DOI: 10.1016/j.yexcr.2021.112600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 01/09/2023]
Abstract
The mechanism that mediates the interaction between the contractile ring and the plasma membrane during cytokinesis remains elusive. We previously found that ERM (Ezrin/Radixin/Moesin) proteins, which usually mediate cellular pole contraction, become over-accumulated at the cell equator and support furrow ingression upon the loss of other actin-membrane associated proteins, anillin and supervillin. In this study, we addressed the molecular basis of the exchangeability between ezrin and other actin-membrane associated proteins in mediating cortical contraction during cytokinesis. We found that depletion of anillin and supervillin caused over-accumulation of the membrane-associated FERM domain and actin-binding C-terminal domain (C-term) of ezrin at the cleavage furrow, respectively. This finding suggests that ezrin differentially shares its binding sites with these proteins on the actin cytoskeleton or inner membrane surface. Using chimeric mutants, we found that ezrin C-term, but not the FERM domain, can substitute for the corresponding anillin domains in cytokinesis and cell proliferation. On the other hand, either the membrane-associated or the actin/myosin-binding domains of anillin could not substitute for the corresponding ezrin domains in controlling cortical blebbing at the cell poles. Our results highlight specific designs of actin- or membrane-associated moieties of different actin-membrane associated proteins with limited exchangeability, which enables them to support diverse cortical activities on the shared actin-membrane interface during cytokinesis.
Collapse
|
15
|
Zhuo Y, Guo Z, Ba T, Zhang C, He L, Zeng C, Dai H. African Swine Fever Virus MGF360-12L Inhibits Type I Interferon Production by Blocking the Interaction of Importin α and NF-κB Signaling Pathway. Virol Sin 2020; 36:176-186. [PMID: 33141406 PMCID: PMC7606853 DOI: 10.1007/s12250-020-00304-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
African swine fever (ASF) is an infectious transboundary disease of domestic pigs and wild boar and spreading throughout Eurasia. There is no vaccine and treatment available. Complex immune escape strategies of African swine fever virus (ASFV) are crucial factors affecting immune prevention and vaccine development. MGF360 genes have been implicated in the modulation of the IFN-I response. The molecular mechanisms contributing to innate immunity are poorly understood. In this study, we demonstrated that ASFV MGF360-12L (MGF360 families 12L protein) significantly inhibited the mRNA transcription and promoter activity of IFN-β and NF-κB, accompanied by decreases of IRF3, STING, TBK1, ISG54, ISG56 and AP-1 mRNA transcription. Also, MGF360-12L might suppress the nuclear localization of p50 and p65 mediated by classical nuclear localization signal (NLS). Additionally, MGF360-12L could interact with KPNA2, KPNA3, and KPNA4, which interrupted the interaction between p65 and KPNA2, KPNA3, KPNA4. We further found that MGF360-12L could interfere with the NF-κB nuclear translocation by competitively inhibiting the interaction between NF-κB and nuclear transport proteins. These findings suggested that MGF360-12L could inhibit the IFN-I production by blocking the interaction of importin α and NF-κB signaling pathway, which might reveal a novel strategy for ASFV to escape the host innate immune response.
Collapse
Affiliation(s)
- Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tongtong Ba
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lihua He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cuiping Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Carim SC, Kechad A, Hickson GRX. Animal Cell Cytokinesis: The Rho-Dependent Actomyosin-Anilloseptin Contractile Ring as a Membrane Microdomain Gathering, Compressing, and Sorting Machine. Front Cell Dev Biol 2020; 8:575226. [PMID: 33117802 PMCID: PMC7575755 DOI: 10.3389/fcell.2020.575226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cytokinesis is the last step of cell division that partitions the cellular organelles and cytoplasm of one cell into two. In animal cells, cytokinesis requires Rho-GTPase-dependent assembly of F-actin and myosin II (actomyosin) to form an equatorial contractile ring (CR) that bisects the cell. Despite 50 years of research, the precise mechanisms of CR assembly, tension generation and closure remain elusive. This hypothesis article considers a holistic view of the CR that, in addition to actomyosin, includes another Rho-dependent cytoskeletal sub-network containing the scaffold protein, Anillin, and septin filaments (collectively termed anillo-septin). We synthesize evidence from our prior work in Drosophila S2 cells that actomyosin and anillo-septin form separable networks that are independently anchored to the plasma membrane. This latter realization leads to a simple conceptual model in which CR assembly and closure depend upon the micro-management of the membrane microdomains to which actomyosin and anillo-septin sub-networks are attached. During CR assembly, actomyosin contractility gathers and compresses its underlying membrane microdomain attachment sites. These microdomains resist this compression, which builds tension. During CR closure, membrane microdomains are transferred from the actomyosin sub-network to the anillo-septin sub-network, with which they flow out of the CR as it advances. This relative outflow of membrane microdomains regulates tension, reduces the circumference of the CR and promotes actomyosin disassembly all at the same time. According to this hypothesis, the metazoan CR can be viewed as a membrane microdomain gathering, compressing and sorting machine that intrinsically buffers its own tension through coordination of actomyosin contractility and anillo-septin-membrane relative outflow, all controlled by Rho. Central to this model is the abandonment of the dogmatic view that the plasma membrane is always readily deformable by the underlying cytoskeleton. Rather, the membrane resists compression to build tension. The notion that the CR might generate tension through resistance to compression of its own membrane microdomain attachment sites, can account for numerous otherwise puzzling observations and warrants further investigation using multiple systems and methods.
Collapse
Affiliation(s)
- Sabrya C. Carim
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Amel Kechad
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Gilles R. X. Hickson
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
17
|
Morris RG, Husain KB, Budnar S, Yap AS. Anillin: The First Proofreading-like Scaffold? Bioessays 2020; 42:e2000055. [PMID: 32735042 DOI: 10.1002/bies.202000055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/15/2020] [Indexed: 01/17/2023]
Abstract
Scaffolds are fundamental to many cellular signaling pathways. In this essay, a novel class of scaffolds are proposed, whose action bears striking resemblance to kinetic proofreading. Commonly, scaffold proteins are thought to work as tethers, bringing different components of a pathway together to improve the likelihood of their interaction. However, recent studies show that the cytoskeletal scaffold, anillin, supports contractile signaling by a novel, non-tethering mechanism that controls the membrane dissociation kinetics of RhoA. More generally, such proof-reading-like scaffolds are distinguished from tethers by a rare type of cooperativity, manifest as a super-linear relationship between scaffold concentration and signaling efficiency. The evidence for this hypothesis is reviewed, its conceptual ramifications are considered, and research questions for the future are discussed.
Collapse
Affiliation(s)
- Richard G Morris
- School of Physics and EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kabir B Husain
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, USA
| | - Srikanth Budnar
- Department of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Alpha S Yap
- Department of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|