1
|
Xiao W, Akao S, Otsuki J. Correlation between female pronuclear/cytoplasmic ratio and number of chromosomes in mouse zygotic stage: implications for aneuploidy assessment in ART. J Assist Reprod Genet 2025; 42:85-95. [PMID: 39585518 PMCID: PMC11805731 DOI: 10.1007/s10815-024-03312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/03/2024] [Indexed: 11/26/2024] Open
Abstract
PURPOSE The objective of this study was to investigate the correlation between the pronuclear/cytoplasmic (PN/C) ratio and the number of chromosomes in mouse zygotes to understand the implications of pronuclear size regulation in early embryonic development. METHODS A combination of enucleation and aggregated chromosomes/chromatin (AC) transfer was utilized to create oocytes with varying numbers of chromosomes. Time-lapse imaging and immunofluorescence staining were employed to analyze pronuclear dynamics and chromosomal configurations. RESULTS Higher chromosome numbers correspond to a larger PN/C ratio. Oocytes with a higher number of chromosomes exhibited larger pronuclei. CONCLUSION The study underscores the complexity of pronuclear size regulation and its correlation with the number of chromosomes. The findings suggest potential applications in ART, where assessing the PN/C ratio could serve as a biomarker for zygote quality and aneuploidy.
Collapse
Affiliation(s)
- Wei Xiao
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushimanaka, Kita, Okayama, 700-8530, Japan
| | - Sakura Akao
- Faculty of Agriculture, Okayama University, 1-1-1 Tsushimanaka, Kita, Okayama, 700-8530, Japan
| | - Junko Otsuki
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushimanaka, Kita, Okayama, 700-8530, Japan.
- Assisted Reproductive Technology Center, Okayama University, 1-1-1 Tsushimanaka, Kita, Okayama, 700-8530, Japan.
| |
Collapse
|
2
|
Li Y, Ge S, Liu J, Sun D, Xi Y, Chen P. Nuclear Structure, Size Regulation, and Role in Cell Migration. Cells 2024; 13:2130. [PMID: 39768219 PMCID: PMC11675058 DOI: 10.3390/cells13242130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The nucleus serves as a pivotal regulatory and control hub in the cell, governing numerous aspects of cellular functions, including DNA replication, transcription, and RNA processing. Therefore, any deviations in nuclear morphology, structure, or organization can strongly affect cellular activities. In this review, we provide an updated perspective on the structure and function of nuclear components, focusing on the linker of nucleoskeleton and cytoskeleton complex, the nuclear envelope, the nuclear lamina, and chromatin. Additionally, nuclear size should be considered a fundamental parameter for the cellular state. Its regulation is tightly linked to environmental changes, development, and various diseases, including cancer. Hence, we also provide a concise overview of different mechanisms by which nuclear size is determined, the emerging role of the nucleus as a mechanical sensor, and the implications of altered nuclear morphology on the physiology of diseased cells.
Collapse
Affiliation(s)
- Yuhao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Shanghao Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Jiayi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Deseng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Pan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| |
Collapse
|
3
|
Borowik AK, Murach KA, Miller BF. The expanding roles of myonuclei in adult skeletal muscle health and function. Biochem Soc Trans 2024; 52:1-14. [PMID: 39700019 DOI: 10.1042/bst20241637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Skeletal muscle cells (myofibers) require multiple nuclei to support a cytoplasmic volume that is larger than other mononuclear cell types. It is dogmatic that mammalian resident myonuclei rely on stem cells (specifically satellite cells) for adding new DNA to muscle fibers to facilitate cytoplasmic expansion that occurs during muscle growth. In this review, we discuss the relationship between cell size and supporting genetic material. We present evidence that myonuclei may undergo DNA synthesis as a strategy to increase genetic material in myofibers independent from satellite cells. We then describe the details of our experiments that demonstrated that mammalian myonuclei can replicate DNA in vivo. Finally, we present our findings in the context of expanding knowledge about myonuclear heterogeneity, myonuclear mobility and shape. We also address why myonuclear replication is potentially important and provide future directions for remaining unknowns. Myonuclear DNA replication, coupled with new discoveries about myonuclear transcription, morphology, and behavior in response to stress, may provide opportunities to leverage previously unappreciated skeletal muscle biological processes for therapeutic targets that support muscle mass, function, and plasticity.
Collapse
Affiliation(s)
- Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, U.S.A
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
- Oklahoma City VA Medical Center, Oklahoma City, OK, U.S.A
| |
Collapse
|
4
|
Zych MG, Contreras M, Vashisth M, Mammel AE, Ha G, Hatch EM. RCC1 depletion drives protein transport defects and rupture in micronuclei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611299. [PMID: 39282444 PMCID: PMC11398501 DOI: 10.1101/2024.09.04.611299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Micronuclei (MN) are a commonly used marker of chromosome instability that form when missegregated chromatin recruits its own nuclear envelope (NE) after mitosis. MN frequently rupture, which results in genome instability, upregulation of metastatic genes, and increased immune signaling. MN rupture is linked to NE defects, but the cause of these defects is poorly understood. Previous work from our lab found that chromosome identity correlates with rupture timing for small MN, i.e. MN containing a short chromosome, with more euchromatic chromosomes forming more stable MN with fewer nuclear lamina gaps. Here we demonstrate that histone methylation promotes rupture and nuclear lamina defects in small MN. This correlates with increased MN size, and we go on to find that all MN have a constitutive nuclear export defect that drives MN growth and nuclear lamina gap expansion, making the MN susceptible to rupture. We demonstrate that these export defects arise from decreased RCC1 levels in MN and that additional loss of RCC1 caused by low histone methylation in small euchromatic MN results in additional import defects that suppress nuclear lamina gaps and MN rupture. Through analysis of mutational signatures associated with early and late rupturing chromosomes in the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset, we identify an enrichment of APOBEC and DNA polymerase E hypermutation signatures in chromothripsis events on early and mid rupturing chromosomes, respectively, suggesting that MN rupture timing could determine the landscape of structural variation in chromothripsis. Our study defines a new model of MN rupture where increased MN growth, caused by defects in protein export, drives gaps in nuclear lamina organization that make the MN susceptible to membrane rupture with long-lasting effects on genome architecture.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Maya Contreras
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Manasvita Vashisth
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anna E Mammel
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gavin Ha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
5
|
Chen P, Mishra S, Prabha H, Sengupta S, Levy DL. Nuclear growth and import can be uncoupled. Mol Biol Cell 2024; 35:ar1. [PMID: 37903226 PMCID: PMC10881164 DOI: 10.1091/mbc.e23-04-0138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
What drives nuclear growth? Studying nuclei assembled in Xenopus egg extract and focusing on importin α/β-mediated nuclear import, we show that, while import is required for nuclear growth, nuclear growth and import can be uncoupled when chromatin structure is manipulated. Nuclei treated with micrococcal nuclease to fragment DNA grew slowly despite exhibiting little to no change in import rates. Nuclei assembled around axolotl chromatin with 20-fold more DNA than Xenopus grew larger but imported more slowly. Treating nuclei with reagents known to alter histone methylation or acetylation caused nuclei to grow less while still importing to a similar extent or to grow larger without significantly increasing import. Nuclear growth but not import was increased in live sea urchin embryos treated with the DNA methylator N-nitrosodimethylamine. These data suggest that nuclear import is not the primary driving force for nuclear growth. Instead, we observed that nuclear blebs expanded preferentially at sites of high chromatin density and lamin addition, whereas small Benzonase-treated nuclei lacking DNA exhibited reduced lamin incorporation into the nuclear envelope. In summary, we report experimental conditions where nuclear import is not sufficient to drive nuclear growth, hypothesizing that this uncoupling is a result of altered chromatin structure.
Collapse
Affiliation(s)
- Pan Chen
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Haritha Prabha
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
6
|
Hara Y. Physical forces modulate interphase nuclear size. Curr Opin Cell Biol 2023; 85:102253. [PMID: 37801797 DOI: 10.1016/j.ceb.2023.102253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023]
Abstract
The eukaryotic nucleus exhibits remarkable plasticity in size, adjusting dynamically to changes in cellular conditions such as during development and differentiation, and across species. Traditionally, the supply of structural constituents to the nuclear envelope has been proposed as the principal determinant of nuclear size. However, recent experimental and theoretical analyses have provided an alternative perspective, which emphasizes the crucial role of physical forces such as osmotic pressure and chromatin repulsion forces in regulating nuclear size. These forces can be modulated by the molecular profiles that traverse the nuclear envelope and assemble in the macromolecular complex. This leads to a new paradigm wherein multiple nuclear macromolecules that are not limited to only the structural constituents of the nuclear envelope, are involved in the control of nuclear size and related functions.
Collapse
Affiliation(s)
- Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi City, 753-8512, Japan.
| |
Collapse
|
7
|
Chen P, Mishra S, Levy DL. Nuclear growth and import can be uncoupled. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537556. [PMID: 37131802 PMCID: PMC10153267 DOI: 10.1101/2023.04.19.537556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
What drives nuclear growth? Studying nuclei assembled in Xenopus egg extract and focusing on importin α/β-mediated nuclear import, we show that, while nuclear growth depends on nuclear import, nuclear growth and import can be uncoupled. Nuclei containing fragmented DNA grew slowly despite exhibiting normal import rates, suggesting nuclear import itself is insufficient to drive nuclear growth. Nuclei containing more DNA grew larger but imported more slowly. Altering chromatin modifications caused nuclei to grow less while still importing to the same extent or to grow larger without increasing nuclear import. Increasing heterochromatin in vivo in sea urchin embryos increased nuclear growth but not import. These data suggest that nuclear import is not the primary driving force for nuclear growth. Instead, live imaging showed that nuclear growth preferentially occurred at sites of high chromatin density and lamin addition, whereas small nuclei lacking DNA exhibited less lamin incorporation. Our hypothesized model is that lamin incorporation and nuclear growth are driven by chromatin mechanical properties, which depend on and can be tuned by nuclear import.
Collapse
Affiliation(s)
- Pan Chen
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
8
|
Miller KE, Cadart C, Heald R. Dodecaploid Xenopus longipes provides insight into the emergence of size scaling relationships during development. Curr Biol 2023; 33:1327-1336.e4. [PMID: 36889317 PMCID: PMC10115129 DOI: 10.1016/j.cub.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
Genome and cell size are strongly correlated across species1,2,3,4,5,6 and influence physiological traits like developmental rate.7,8,9,10,11,12 Although size scaling features such as the nuclear-cytoplasmic (N/C) ratio are precisely maintained in adult tissues,13 it is unclear when during embryonic development size scaling relationships are established. Frogs of the genus Xenopus provide a model to investigate this question, since 29 extant Xenopus species vary in ploidy from 2 to 12 copies (N) of the ancestral frog genome, ranging from 20 to 108 chromosomes.14,15 The most widely studied species, X. laevis (4N = 36) and X. tropicalis (2N = 20), scale at all levels, from body size to cellular and subcellular levels.16 Paradoxically, the rare, critically endangered dodecaploid (12N = 108) Xenopus longipes (X. longipes) is a small frog.15,17 We observed that despite some morphological differences, X. longipes and X. laevis embryogenesis occurred with similar timing, with genome to cell size scaling emerging at the swimming tadpole stage. Across the three species, cell size was determined primarily by egg size, whereas nuclear size correlated with genome size during embryogenesis, resulting in different N/C ratios in blastulae prior to gastrulation. At the subcellular level, nuclear size correlated more strongly with genome size, whereas mitotic spindle size scaled with cell size. Our cross-species study indicates that scaling of cell size to ploidy is not due to abrupt changes in cell division timing, that different size scaling regimes occur during embryogenesis, and that the developmental program of Xenopus is remarkably consistent across a wide range of genome and egg sizes.
Collapse
Affiliation(s)
- Kelly E Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Clotilde Cadart
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
9
|
Heijo H, Merten CA, Hara Y. Differential contribution of nuclear size scaling mechanisms between Xenopus species. Dev Growth Differ 2022; 64:501-507. [PMID: 36308491 PMCID: PMC11520979 DOI: 10.1111/dgd.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/24/2022] [Accepted: 10/05/2022] [Indexed: 12/31/2022]
Abstract
Size of the nucleus, a membrane-bound organelle for DNA replication and transcription in eukaryotic cells, varies to adapt nuclear functions to the surrounding environment. Nuclear size strongly correlates with cytoplasmic size and genomic content. Previous studies using Xenopus laevis have unraveled two modes, cytoplasmic and chromatin-based mechanisms, for controlling nuclear size. However, owing to limited comparative analyses of the mechanisms among eukaryotic species, the contribution of each mechanism in controlling nuclear size has not been comprehensively elucidated. Here, we compared the relative contribution utilizing a cell-free reconstruction system from the cytoplasmic extract of unfertilized eggs of Xenopus tropicalis to that of the sister species X. laevis. In this system, interphase nuclei were reconstructed in vitro from sperm chromatin and increased in size throughout the incubation period. Using extracts from X. tropicalis, growth rate of the reconstructed nuclei was decreased by obstructing the effective cytoplasmic space, decreasing DNA quantity, or inhibiting molecules involved in various cytoplasmic mechanisms. Although these features are qualitatively identical to that shown by the extract of X. laevis, the sensitivities of experimental manipulation for each cellular parameter were different between the extracts from two Xenopus species. These quantitative differences implied that the contribution of each mode to expansion of the nuclear envelope is coordinated in a species-specific manner, which sets the species-specific nuclear size for in vivo physiological function.
Collapse
Affiliation(s)
- Hiroko Heijo
- Evolutionary Cell Biology Laboratory, Faculty of ScienceYamaguchi UniversityYamaguchi CityJapan
| | - Christoph A. Merten
- Laboratory of Biomedical Microfluidics (LBMM), Department of Bioengineering, School of EngineeringSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of ScienceYamaguchi UniversityYamaguchi CityJapan
| |
Collapse
|
10
|
Balachandra S, Sarkar S, Amodeo AA. The Nuclear-to-Cytoplasmic Ratio: Coupling DNA Content to Cell Size, Cell Cycle, and Biosynthetic Capacity. Annu Rev Genet 2022; 56:165-185. [PMID: 35977407 PMCID: PMC10165727 DOI: 10.1146/annurev-genet-080320-030537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA;
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| |
Collapse
|
11
|
Quaas CE, Lin B, Long DT. Transcription suppression is mediated by the HDAC1-Sin3 complex in Xenopus nucleoplasmic extract. J Biol Chem 2022; 298:102578. [PMID: 36220390 PMCID: PMC9650048 DOI: 10.1016/j.jbc.2022.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Modification of histones provides a dynamic mechanism to regulate chromatin structure and access to DNA. Histone acetylation, in particular, plays a prominent role in controlling the interaction between DNA, histones, and other chromatin-associated proteins. Defects in histone acetylation patterns interfere with normal gene expression and underlie a wide range of human diseases. Here, we utilize Xenopus egg extracts to investigate how changes in histone acetylation influence transcription of a defined gene construct. We show that inhibition of histone deacetylase 1 and 2 (HDAC1/2) specifically counteracts transcription suppression by preventing chromatin compaction and deacetylation of histone residues H4K5 and H4K8. Acetylation of these sites supports binding of the chromatin reader and transcription regulator BRD4. We also identify HDAC1 as the primary driver of transcription suppression and show that this activity is mediated through the Sin3 histone deacetylase complex. These findings highlight functional differences between HDAC1 and HDAC2, which are often considered to be functionally redundant, and provide additional molecular context for their activity.
Collapse
|
12
|
Darp R, Vittoria MA, Ganem NJ, Ceol CJ. Oncogenic BRAF induces whole-genome doubling through suppression of cytokinesis. Nat Commun 2022; 13:4109. [PMID: 35840569 PMCID: PMC9287415 DOI: 10.1038/s41467-022-31899-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Melanomas and other solid tumors commonly have increased ploidy, with near-tetraploid karyotypes being most frequently observed. Such karyotypes have been shown to arise through whole-genome doubling events that occur during early stages of tumor progression. The generation of tetraploid cells via whole-genome doubling is proposed to allow nascent tumor cells the ability to sample various pro-tumorigenic genomic configurations while avoiding the negative consequences that chromosomal gains or losses have in diploid cells. Whereas a high prevalence of whole-genome doubling events has been established, the means by which whole-genome doubling arises is unclear. Here, we find that BRAFV600E, the most common mutation in melanomas, can induce whole-genome doubling via cytokinesis failure in vitro and in a zebrafish melanoma model. Mechanistically, BRAFV600E causes decreased activation and localization of RhoA, a critical cytokinesis regulator. BRAFV600E activity during G1/S phases of the cell cycle is required to suppress cytokinesis. During G1/S, BRAFV600E activity causes inappropriate centriole amplification, which is linked in part to inhibition of RhoA and suppression of cytokinesis. Together these data suggest that common abnormalities of melanomas linked to tumorigenesis - amplified centrosomes and whole-genome doubling events - can be induced by oncogenic BRAF and other mutations that increase RAS/MAPK pathway activity.
Collapse
Affiliation(s)
- Revati Darp
- University of Massachusetts Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA
- University of Massachusetts Chan Medical School, Department of Molecular, Cellular and Cancer Biology, Worcester, MA, USA
| | - Marc A Vittoria
- Departments of Pharmacology and Experimental Therapeutics and Medicine, Division of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Neil J Ganem
- Departments of Pharmacology and Experimental Therapeutics and Medicine, Division of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Craig J Ceol
- University of Massachusetts Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA.
- University of Massachusetts Chan Medical School, Department of Molecular, Cellular and Cancer Biology, Worcester, MA, USA.
| |
Collapse
|
13
|
Niide T, Asari S, Kawabata K, Hara Y. Specificity of Nuclear Size Scaling in Frog Erythrocytes. Front Cell Dev Biol 2022; 10:857862. [PMID: 35663388 PMCID: PMC9159806 DOI: 10.3389/fcell.2022.857862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
In eukaryotes, the cell has the ability to modulate the size of the nucleus depending on the surrounding environment, to enable nuclear functions such as DNA replication and transcription. From previous analyses of nuclear size scaling in various cell types and species, it has been found that eukaryotic cells have a conserved scaling rule, in which the nuclear size correlates with both cell size and genomic content. However, there are few studies that have focused on a certain cell type and systematically analyzed the size scaling properties in individual species (intra-species) and among species (inter-species), and thus, the difference in the scaling rules among cell types and species is not well understood. In the present study, we analyzed the size scaling relationship among three parameters, nuclear size, cell size, and genomic content, in our measured datasets of terminally differentiated erythrocytes of five Anura frogs and collected datasets of different species classes from published papers. In the datasets of isolated erythrocytes from individual frogs, we found a very weak correlation between the measured nuclear and cell cross-sectional areas. Within the erythrocytes of individual species, the correlation of the nuclear area with the cell area showed a very low hypoallometric relationship, in which the relative nuclear size decreased when the cell size increased. These scaling trends in intra-species erythrocytes are not comparable to the known general correlation in other cell types. When comparing parameters across species, the nuclear areas correlated with both cell areas and genomic contents among the five frogs and the collected datasets in each species class. However, the contribution of genomic content to nuclear size determination was smaller than that of the cell area in all species classes. In particular, the estimated degree of the contribution of genomic content was greater in the amphibian class than in other classes. Together with our imaging analysis of structural components in nuclear membranes, we hypothesized that the observed specific features in nuclear size scaling are achieved by the weak interaction of the chromatin with the nuclear membrane seen in frog erythrocytes.
Collapse
Affiliation(s)
| | | | | | - Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
14
|
Yolk platelets impede nuclear expansion in Xenopus embryos. Dev Biol 2021; 482:101-113. [PMID: 34906546 DOI: 10.1016/j.ydbio.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 08/14/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022]
Abstract
During metazoan early embryogenesis, the intracellular properties of proteins and organelles change dynamically through rapid cleavage. In particular, a change in the nucleus size is known to contribute to embryonic development-dependent cell cycle and gene expression regulation. Here, we compared the nuclear sizes of various blastomeres from developing Xenopus embryos and analyzed the mechanisms that control the nuclear expansion dynamics by manipulating the amount of intracellular components in a cell-free system. Nuclear expansion was slower in blastomeres from vegetal hemispheres during a longer interphase than in those from animal hemispheres. Furthermore, upon recapitulating interphase events by manipulating the concentration of yolk platelets, which are originally rich in the vegetal blastomeres, in cell-free cytoplasmic extracts, nuclear expansion and DNA replication became slower than that in normal yolk-free conditions. Under these conditions, the supplemented yolk platelets accumulated around the nucleus in a microtubule-dependent manner and impeded the organization of the endoplasmic reticulum network. Overall, we propose that yolk platelets around the nucleus reduce membrane supply from the endoplasmic reticulum to the nucleus, resulting in slower nuclear expansion and cell cycle progression in the yolk-rich vegetal blastomeres.
Collapse
|
15
|
Cantwell H, Dey G. Nuclear size and shape control. Semin Cell Dev Biol 2021; 130:90-97. [PMID: 34776332 DOI: 10.1016/j.semcdb.2021.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/27/2022]
Abstract
The nucleus displays a wide range of sizes and shapes in different species and cell types, yet its size scaling and many of the key structural constituents that determine its shape are highly conserved. In this review, we discuss the cellular properties and processes that contribute to nuclear size and shape control, drawing examples from across eukaryotes and highlighting conserved themes and pathways. We then outline physiological roles that have been uncovered for specific nuclear morphologies and disease pathologies associated with aberrant nuclear morphology. We argue that a comparative approach, assessing and integrating observations from different systems, will be a powerful way to help us address the open questions surrounding functional roles of nuclear size and shape in cell physiology.
Collapse
Affiliation(s)
- Helena Cantwell
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Meyerhofstr.1, 69117 Heidelberg, Germany.
| |
Collapse
|
16
|
Deolal P, Male G, Mishra K. The challenge of staying in shape: nuclear size matters. Curr Genet 2021; 67:605-612. [PMID: 33779777 DOI: 10.1007/s00294-021-01176-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Cellular organelles have unique morphology and the organelle size to cell size ratio is regulated. Nucleus is one of the most prominent, usually round in shape, organelle of a eukaryotic cell that occupies 8-10% of cellular volume. The shape and size of nucleus is known to undergo remodeling during processes such as cell growth, division and certain stresses. Regulation of protein and lipid distribution at the nuclear envelope is crucial for preserving the nuclear morphology and size. As size and morphology are interlinked, altering one influences the other. In this perspective, we discuss the relationship between size and shape regulation of the nucleus.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Gurranna Male
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|