1
|
Franić D, Pravica M, Zubčić K, Miles S, Bedalov A, Boban M. Quiescent cells maintain active degradation-mediated protein quality control requiring proteasome, autophagy, and nucleus-vacuole junctions. J Biol Chem 2025; 301:108045. [PMID: 39617269 PMCID: PMC11731230 DOI: 10.1016/j.jbc.2024.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 12/24/2024] Open
Abstract
Many cells spend a major part of their life in quiescence, a reversible state characterized by a distinct cellular organization and metabolism. In glucose-depleted quiescent yeast cells, there is a metabolic shift from glycolysis to mitochondrial respiration, and a large fraction of proteasomes are reorganized into cytoplasmic granules containing disassembled particles. Given these changes, the operation of protein quality control (PQC) in quiescent cells, in particular the reliance on degradation-mediated PQC and the specific pathways involved, remains unclear. By examining model misfolded proteins expressed in glucose-depleted quiescent yeast cells, we found that misfolded proteins are targeted for selective degradation requiring functional 26S proteasomes. This indicates that a significant pool of proteasomes remains active in degrading quality control substrates. Misfolded proteins were degraded in a manner dependent on the E3 ubiquitin ligases Ubr1 and San1, with Ubr1 playing a dominant role. In contrast to exponentially growing cells, the efficient clearance of certain misfolded proteins additionally required intact nucleus-vacuole junctions (NVJ) and Cue5-independent selective autophagy. Our findings suggest that proteasome activity, autophagy, and NVJ-dependent degradation operate in parallel. Together, the data demonstrate that quiescent cells maintain active PQC that relies primarily on selective protein degradation. The necessity of multiple degradation pathways for the removal of misfolded proteins during quiescence underscores the importance of misfolded protein clearance in this cellular state.
Collapse
Affiliation(s)
- Dina Franić
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Mihaela Pravica
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Klara Zubčić
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Shawna Miles
- Translational Science and Therapeutics Division and Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Antonio Bedalov
- Translational Science and Therapeutics Division and Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; Department of Medicine and Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Mirta Boban
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia.
| |
Collapse
|
2
|
Müller L, Hoppe T. UPS-dependent strategies of protein quality control degradation. Trends Biochem Sci 2024; 49:859-874. [PMID: 38945729 DOI: 10.1016/j.tibs.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
The degradation of damaged proteins is critical for tissue integrity and organismal health because damaged proteins have a high propensity to form aggregates. E3 ubiquitin ligases are key regulators of protein quality control (PQC) and mediate the selective degradation of damaged proteins, a process termed 'PQC degradation' (PQCD). The degradation signals (degrons) that trigger PQCD are based on hydrophobic sites that are normally buried within the native protein structure. However, an open question is how PQCD-specialized E3 ligases distinguish between transiently misfolded proteins, which can be efficiently refolded, and permanently damaged proteins, which must be degraded. While significant progress has been made in characterizing degradation determinants, understanding the key regulatory signals of cellular and organismal PQCD pathways remains a challenge.
Collapse
Affiliation(s)
- Leonie Müller
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
3
|
Flagg MP, Lam B, Lam DK, Le TM, Kao A, Slaiwa YI, Hampton RY. Exploring the "misfolding problem" by systematic discovery and analysis of functional-but-degraded proteins. Mol Biol Cell 2023; 34:ar125. [PMID: 37729018 PMCID: PMC10848938 DOI: 10.1091/mbc.e23-06-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
In both health and disease, the ubiquitin-proteasome system (UPS) degrades point mutants that retain partial function but have decreased stability compared with their wild-type counterparts. This class of UPS substrate includes routine translational errors and numerous human disease alleles, such as the most common cause of cystic fibrosis, ΔF508-CFTR. Yet, there is no systematic way to discover novel examples of these "minimally misfolded" substrates. To address that shortcoming, we designed a genetic screen to isolate functional-but-degraded point mutants, and we used the screen to study soluble, monomeric proteins with known structures. These simple parent proteins yielded diverse substrates, allowing us to investigate the structural features, cytotoxicity, and small-molecule regulation of minimal misfolding. Our screen can support numerous lines of inquiry, and it provides broad access to a class of poorly understood but biomedically critical quality-control substrates.
Collapse
Affiliation(s)
- Matthew P. Flagg
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Breanna Lam
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Darren K. Lam
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Tiffany M. Le
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Andy Kao
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Yousif I. Slaiwa
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Randolph Y. Hampton
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
4
|
Abildgaard AB, Voutsinos V, Petersen SD, Larsen FB, Kampmeyer C, Johansson KE, Stein A, Ravid T, Andréasson C, Jensen MK, Lindorff-Larsen K, Hartmann-Petersen R. HSP70-binding motifs function as protein quality control degrons. Cell Mol Life Sci 2023; 80:32. [PMID: 36609589 PMCID: PMC11072582 DOI: 10.1007/s00018-022-04679-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023]
Abstract
Protein quality control (PQC) degrons are short protein segments that target misfolded proteins for proteasomal degradation, and thus protect cells against the accumulation of potentially toxic non-native proteins. Studies have shown that PQC degrons are hydrophobic and rarely contain negatively charged residues, features which are shared with chaperone-binding regions. Here we explore the notion that chaperone-binding regions may function as PQC degrons. When directly tested, we found that a canonical Hsp70-binding motif (the APPY peptide) functioned as a dose-dependent PQC degron both in yeast and in human cells. In yeast, Hsp70, Hsp110, Fes1, and the E3 Ubr1 target the APPY degron. Screening revealed that the sequence space within the chaperone-binding region of APPY that is compatible with degron function is vast. We find that the number of exposed Hsp70-binding sites in the yeast proteome correlates with a reduced protein abundance and half-life. Our results suggest that when protein folding fails, chaperone-binding sites may operate as PQC degrons, and that the sequence properties leading to PQC-linked degradation therefore overlap with those of chaperone binding.
Collapse
Affiliation(s)
- Amanda B Abildgaard
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Vasileios Voutsinos
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Søren D Petersen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fia B Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Kampmeyer
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer E Johansson
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Amelie Stein
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Santiago A, Morano KA. Oxidation of two cysteines within yeast Hsp70 impairs proteostasis while directly triggering an Hsf1-dependent cytoprotective response. J Biol Chem 2022; 298:102424. [PMID: 36030825 PMCID: PMC9508553 DOI: 10.1016/j.jbc.2022.102424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases affect millions of Americans every year. One factor linked to the formation of aggregates associated with these diseases is damage sustained to proteins by oxidative stress. Management of protein misfolding by the ubiquitous Hsp70 chaperone family can be modulated by modification of two key cysteines in the ATPase domain by oxidizing or thiol-modifying compounds. To investigate the biological consequences of cysteine modification on the Hsp70 Ssa1 in budding yeast, we generated cysteine null (cysteine to serine) and oxidomimetic (cysteine to aspartic acid) mutant variants of both C264 and C303 and demonstrate reduced ATP binding, hydrolysis, and protein folding properties in both the oxidomimetic and hydrogen peroxide–treated Ssa1. In contrast, cysteine nullification rendered Ssa1 insensitive to oxidative inhibition. Additionally, we determined the oxidomimetic ssa1-2CD (C264D, C303D) allele was unable to function as the sole Ssa1 isoform in yeast cells and also exhibited dominant negative effects on cell growth and viability. Ssa1 binds to and represses Hsf1, the major transcription factor controlling the heat shock response, and we found the oxidomimetic Ssa1 failed to stably interact with Hsf1, resulting in constitutive activation of the heat shock response. Consistent with our in vitro findings, ssa1-2CD cells were compromised for de novo folding, post-stress protein refolding, and in regulated degradation of a model terminally misfolded protein. Together, these findings pinpoint Hsp70 as a key link between oxidative stress and proteostasis, information critical to understanding cytoprotective systems that prevent and manage cellular insults underlying complex disease states.
Collapse
Affiliation(s)
- Alec Santiago
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, Texas, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences at UTHealth Houston, Houston, Texas, USA
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, Texas, USA.
| |
Collapse
|
6
|
Culver JA, Li X, Jordan M, Mariappan M. A second chance for protein targeting/folding: Ubiquitination and deubiquitination of nascent proteins. Bioessays 2022; 44:e2200014. [PMID: 35357021 PMCID: PMC9133216 DOI: 10.1002/bies.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/07/2022]
Abstract
Molecular chaperones in cells constantly monitor and bind to exposed hydrophobicity in newly synthesized proteins and assist them in folding or targeting to cellular membranes for insertion. However, proteins can be misfolded or mistargeted, which often causes hydrophobic amino acids to be exposed to the aqueous cytosol. Again, chaperones recognize exposed hydrophobicity in these proteins to prevent nonspecific interactions and aggregation, which are harmful to cells. The chaperone-bound misfolded proteins are then decorated with ubiquitin chains denoting them for proteasomal degradation. It remains enigmatic how molecular chaperones can mediate both maturation of nascent proteins and ubiquitination of misfolded proteins solely based on their exposed hydrophobic signals. In this review, we propose a dynamic ubiquitination and deubiquitination model in which ubiquitination of newly synthesized proteins serves as a "fix me" signal for either refolding of soluble proteins or retargeting of membrane proteins with the help of chaperones and deubiquitinases. Such a model would provide additional time for aberrant nascent proteins to fold or route for membrane insertion, thus avoiding excessive protein degradation and saving cellular energy spent on protein synthesis. Also see the video abstract here: https://youtu.be/gkElfmqaKG4.
Collapse
Affiliation(s)
- Jacob A. Culver
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Xia Li
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Matthew Jordan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| |
Collapse
|
7
|
Borgert L, Mishra S, den Brave F. Quality control of cytoplasmic proteins inside the nucleus. Comput Struct Biotechnol J 2022; 20:4618-4625. [PMID: 36090811 PMCID: PMC9440239 DOI: 10.1016/j.csbj.2022.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022] Open
Abstract
A complex network of molecular chaperones and proteolytic machinery safeguards the proteins which comprise the proteome, from the time they are synthesized on ribosomes to their destruction via proteolysis. Impaired protein quality control results in the accumulation of aberrant proteins, which may undergo unwanted spurious interactions with other proteins, thereby interfering with a broad range of cellular functions. To protect the cellular environment, such proteins are degraded or sequestered into inclusions in different subcellular compartments. Recent findings demonstrate that aberrant or mistargeted proteins from different cytoplasmic compartments are removed from their environment by transporting them into the nucleus. These proteins are degraded by the nuclear ubiquitin–proteasome system or sequestered into intra-nuclear inclusions. Here, we discuss the emerging role of the nucleus as a cellular quality compartment based on recent findings in the yeast Saccharomyces cerevisiae. We describe the current knowledge on cytoplasmic substrates of nuclear protein quality control, the mechanism of nuclear import of such proteins, as well as possible advantages and risks of nuclear sequestration of aberrant proteins.
Collapse
|
8
|
Ubiquitin Ligase Redundancy and Nuclear-Cytoplasmic Localization in Yeast Protein Quality Control. Biomolecules 2021; 11:biom11121821. [PMID: 34944465 PMCID: PMC8698790 DOI: 10.3390/biom11121821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
The diverse functions of proteins depend on their proper three-dimensional folding and assembly. Misfolded cellular proteins can potentially harm cells by forming aggregates in their resident compartments that can interfere with vital cellular processes or sequester important factors. Protein quality control (PQC) pathways are responsible for the repair or destruction of these abnormal proteins. Most commonly, the ubiquitin-proteasome system (UPS) is employed to recognize and degrade those proteins that cannot be refolded by molecular chaperones. Misfolded substrates are ubiquitylated by a subset of ubiquitin ligases (also called E3s) that operate in different cellular compartments. Recent research in Saccharomyces cerevisiae has shown that the most prominent ligases mediating cytoplasmic and nuclear PQC have overlapping yet distinct substrate specificities. Many substrates have been characterized that can be targeted by more than one ubiquitin ligase depending on their localization, and cytoplasmic PQC substrates can be directed to the nucleus for ubiquitylation and degradation. Here, we review some of the major yeast PQC ubiquitin ligases operating in the nucleus and cytoplasm, as well as current evidence indicating how these ligases can often function redundantly toward substrates in these compartments.
Collapse
|
9
|
Ibarra R, Borror HR, Hart B, Gardner RG, Kleiger G. The San1 Ubiquitin Ligase Avidly Recognizes Misfolded Proteins through Multiple Substrate Binding Sites. Biomolecules 2021; 11:1619. [PMID: 34827617 PMCID: PMC8615460 DOI: 10.3390/biom11111619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular homeostasis depends on robust protein quality control (PQC) pathways that discern misfolded proteins from functional ones in the cell. One major branch of PQC involves the controlled degradation of misfolded proteins by the ubiquitin-proteasome system. Here ubiquitin ligases must recognize and bind to misfolded proteins with sufficient energy to form a complex and with an adequate half-life to achieve poly-ubiquitin chain formation, the signal for protein degradation, prior to its dissociation from the ligase. It is not well understood how PQC ubiquitin ligases accomplish these tasks. Employing a fully reconstituted enzyme and substrate system to perform quantitative biochemical experiments, we demonstrate that the yeast PQC ubiquitin ligase San1 contains multiple substrate binding sites along its polypeptide chain that appear to display specificity for unique misfolded proteins. The results are consistent with a model where these substrate binding sites enable San1 to bind to misfolded substrates avidly, resulting in high affinity ubiquitin ligase-substrate complexes.
Collapse
Affiliation(s)
- Rebeca Ibarra
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (R.I.); (B.H.)
| | - Heather R. Borror
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; (H.R.B.); (R.G.G.)
| | - Bryce Hart
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (R.I.); (B.H.)
| | - Richard G. Gardner
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; (H.R.B.); (R.G.G.)
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (R.I.); (B.H.)
| |
Collapse
|
10
|
Sannino S, Yates ME, Schurdak ME, Oesterreich S, Lee AV, Wipf P, Brodsky JL. Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised. eLife 2021; 10:64977. [PMID: 34180400 PMCID: PMC8275131 DOI: 10.7554/elife.64977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Molecular chaperones, such as Hsp70, prevent proteotoxicity and maintain homeostasis. This is perhaps most evident in cancer cells, which overexpress Hsp70 and thrive even when harboring high levels of misfolded proteins. To define the response to proteotoxic challenges, we examined adaptive responses in breast cancer cells in the presence of an Hsp70 inhibitor. We discovered that the cells bin into distinct classes based on inhibitor sensitivity. Strikingly, the most resistant cells have higher autophagy levels, and autophagy was maximally activated only in resistant cells upon Hsp70 inhibition. In turn, resistance to compromised Hsp70 function required the integrated stress response transducer, GCN2, which is commonly associated with amino acid starvation. In contrast, sensitive cells succumbed to Hsp70 inhibition by activating PERK. These data reveal an unexpected route through which breast cancer cells adapt to proteotoxic insults and position GCN2 and autophagy as complementary mechanisms to ensure survival when proteostasis is compromised.
Collapse
Affiliation(s)
- Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Megan E Yates
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States.,Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, United States.,Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Mark E Schurdak
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States.,University of Pittsburgh Drug Discovery Institute, Pittsburgh, United States
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States.,Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States.,Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
11
|
Jevtić P, Haakonsen DL, Rapé M. An E3 ligase guide to the galaxy of small-molecule-induced protein degradation. Cell Chem Biol 2021; 28:1000-1013. [PMID: 33891901 DOI: 10.1016/j.chembiol.2021.04.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Induced protein degradation accomplishes elimination, rather than inhibition, of pathological proteins. Key to the success of this novel therapeutic modality is the modification of proteins with ubiquitin chains, which is brought about by molecular glues or bivalent compounds that induce proximity between the target protein and an E3 ligase. The human genome encodes ∼600 E3 ligases that differ widely in their structures, catalytic mechanisms, modes of regulation, and physiological roles. While many of these enzymes hold great promise for drug discovery, few have been successfully engaged by small-molecule degraders. Here, we review E3 ligases that are being used for induced protein degradation. Based on these prior successes and our growing understanding of the biology and biochemistry of E3 ligases, we propose new ubiquitylation enzymes that can be harnessed for drug discovery to firmly establish induced protein degradation as a specific and efficient therapeutic approach.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Diane L Haakonsen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Flagg MP, Wangeline MA, Holland SR, Duttke SH, Benner C, Neal S, Hampton RY. Inner-nuclear-membrane-associated degradation employs Dfm1-independent retrotranslocation and alleviates misfolded transmembrane-protein toxicity. Mol Biol Cell 2021; 32:521-537. [PMID: 33566711 PMCID: PMC8101470 DOI: 10.1091/mbc.e20-11-0720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 11/11/2022] Open
Abstract
Before their delivery to and degradation by the 26S proteasome, misfolded transmembrane proteins of the endoplasmic reticulum (ER) and inner-nuclear membrane (INM) must be extracted from lipid bilayers. This extraction process, known as retrotranslocation, requires both quality-control E3 ubiquitin ligases and dislocation factors that diminish the energetic cost of dislodging the transmembrane segments of a protein. Recently, we showed that retrotranslocation of all ER transmembrane proteins requires the Dfm1 rhomboid pseudoprotease. However, we did not investigate whether Dfm1 also mediated retrotranslocation of transmembrane substrates in the INM, which is contiguous with the ER but functionally separated from it by nucleoporins. Here, we show that canonical retrotranslocation occurs during INM-associated degradation (INMAD) but proceeds independently of Dfm1. Despite this independence, ER-associated degradation (ERAD)-M and INMAD cooperate to mitigate proteotoxicity. We show a novel misfolded-transmembrane-protein toxicity that elicits genetic suppression, demonstrating the cell's ability to tolerate a toxic burden of misfolded transmembrane proteins without functional INMAD or ERAD-M. This strikingly contrasted the suppression of the dfm1Δ null, which leads to the resumption of ERAD-M through HRD-complex remodeling. Thus, we conclude that INM retrotranslocation proceeds through a novel, private channel that can be studied by virtue of its role in alleviating membrane-associated proteotoxicity.
Collapse
Affiliation(s)
- Matthew P. Flagg
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Margaret A. Wangeline
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Sarah R. Holland
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Sascha H. Duttke
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Sonya Neal
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Randolph Y. Hampton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|