1
|
Guo X, Mu B, Zhu L, Zhuo Y, Mu P, Ren F, Lu F. Rabenosyn-5 suppresses non-small cell lung cancer metastasis via inhibiting CDC42 activity. Cancer Gene Ther 2024; 31:1465-1476. [PMID: 39075137 PMCID: PMC11489121 DOI: 10.1038/s41417-024-00813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Metastasis, the primary cause of death in lung cancer patients, is facilitated by cytoskeleton remodeling, which plays a crucial role in cancer cell migration and invasion. However, the precise regulatory mechanisms of intracellular trafficking proteins involved in cytoskeleton remodeling remain unclear. In this study, we have identified Rabenosyn-5 (Rbsn) as an inhibitor of filopodia formation and lung cancer metastasis. Mechanistically, Rbsn interacts with CDC42 and functions as a GTPase activating protein (GAP), thereby inhibiting CDC42 activity and subsequent filopodia formation. Furthermore, we have discovered that Akt phosphorylates Rbsn at the Thr253 site, and this phosphorylation negates the inhibitory effect of Rbsn on CDC42 activity. Additionally, our analysis reveals that Rbsn expression is significantly downregulated in lung cancer, and this decrease is associated with a worse prognosis. These findings provide strong evidence supporting the role of Rbsn in suppressing lung cancer progression through the inhibition of metastasis.
Collapse
Affiliation(s)
- Xiong Guo
- Department of Colorectal and Anal Surgery, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Bin Mu
- Shanghai Zhaohui Pharmaceutical Co. Ltd, 200436, Shanghai, China
| | - Lin Zhu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, 113004, Shenyang, China
- Key laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, 113004, Shenyang, China
| | - Yanli Zhuo
- Department of drug inspection (II), Shenyang Institute for Food and Drug Control, 110000, Shenyang, China
| | - Ping Mu
- Key laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, 113004, Shenyang, China.
- Department of Physiology, Shenyang Medical College, 113004, Shenyang, China.
| | - Fu Ren
- Key laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, 113004, Shenyang, China.
- Department of Anatomy, Shenyang Medical College, 113004, Shenyang, China.
| | - Fangjin Lu
- Department of Pharmaceutical Analysis, Shenyang Medical College, 113004, Shenyang, China.
- Shenyang Key Laboratory for Screening Biomarkers of Tumor Progression and Targeted Therapy of Tumors, Shenyang Medical College, 113004, Shenyang, China.
| |
Collapse
|
2
|
Bement WM, Goryachev AB, Miller AL, von Dassow G. Patterning of the cell cortex by Rho GTPases. Nat Rev Mol Cell Biol 2024; 25:290-308. [PMID: 38172611 DOI: 10.1038/s41580-023-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.
Collapse
Affiliation(s)
- William M Bement
- Center for Quantitative Cell Imaging, Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Andrew B Goryachev
- Center for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Ann L Miller
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
3
|
Wei W, Zheng B, Zheng S, Wu D, Chu Y, Zhang S, Wang D, Ma X, Liu X, Yao X, Fu C. The Cdc42 GAP Rga6 promotes monopolar outgrowth of spores. J Biophys Biochem Cytol 2022; 222:213678. [PMID: 36355349 PMCID: PMC9652770 DOI: 10.1083/jcb.202202064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/01/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
The molecular mechanisms underlying the establishment of the monopolar growth of fission yeast spores have been less characterized. Here, we report that the Cdc42 GTPase-activating protein (GAP) Rga6 is required for promoting monopolar growth during spore germination. The absence of Rga6 increases the number of spores that grow in a bipolar fashion. Rga6 decorates the non-growing cortical region, binds phosphatidylinositol 4,5-bisphosphate, and colocalizes with the phosphatidylinositol 4,5-bisphosphate-binding protein Opy1. Overexpression of Opy1 diminishes the cortical localization of Rga6. The characteristic localization of Rga6 on the cell cortex depends on the C-terminal PBR region of Rga6. Moreover, engineered chimera composed of the Rga6 C-terminal PBR region fused to the GAP domain of Rga3 or Rga4 are sufficient to rescue the spore growth phenotype caused by the absence of Rga6. Hence, our work establishes a paradigm in which the lipid composition of the plasma membrane directs polarized cell growth by specifying the cortical localization of a GAP protein.
Collapse
Affiliation(s)
- Wenfan Wei
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Biyu Zheng
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shengnan Zheng
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Daqiang Wu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongkang Chu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shenghao Zhang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaopeng Ma
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Xuebiao Yao:
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Correspondence to Chuanhai Fu:
| |
Collapse
|
4
|
Rich-Robinson J, Russell A, Mancini E, Das M. Cdc42 reactivation at growth sites is regulated by local cell-cycle-dependent loss of its GTPase-activating protein Rga4 in fission yeast. J Cell Sci 2021; 134:272049. [PMID: 34523683 DOI: 10.1242/jcs.259291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
In fission yeast, polarized cell growth stops during division and resumes after cytokinesis completes and cells separate. It is unclear how growth reactivation is timed to occur immediately after cell separation. We uncoupled these sequential events by delaying cytokinesis with a temporary Latrunculin A treatment. Mitotic cells recovering from treatment initiate end growth during septation, displaying a polar elongation simultaneous with septation (PrESS) phenotype. PrESS cell ends reactivate Cdc42, a major regulator of polarized growth, during septation, but at a fixed time after anaphase B. A candidate screen implicates Rga4, a negative regulator of Cdc42, in this process. We show that Rga4 appears punctate at the cell sides during G2, but is diffuse during mitosis, extending to the ends. Although the Morphogenesis Orb6 (MOR) pathway is known to promote cell separation and growth by activating protein synthesis, we find that, for polarized growth, removal of Rga4 from the ends is also necessary. Therefore, we propose that growth resumes after division once the MOR pathway is activated and the ends lose Rga4 in a cell-cycle-dependent manner.
Collapse
Affiliation(s)
- Julie Rich-Robinson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Afton Russell
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eleanor Mancini
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maitreyi Das
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|