1
|
Chowdhury SR, Shilpi A, Felsenfeld G. RNA Pol-II transcripts in nucleolar associated domains of cancer cell nucleoli. Nucleus 2025; 16:2468597. [PMID: 39987497 PMCID: PMC11849958 DOI: 10.1080/19491034.2025.2468597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
We performed a comparative study of the non-ribosomal gene content of nucleoli from seven cancer cell lines, using identical methods of purification and analysis. We identified unique chromosomal domains associated with the nucleolus (NADs) and genes within these domains (NAGs). Four cell lines have relatively few NAGs, which appears mostly transcriptionally inactive, consistent with literature. The remaining three lines formed a separate group with nucleoli with unique features and NADS. They constitute larger number of common NAGs, marked by ATAC-seq and having accessible promoters, with histone markers for transcriptional activity and detectable RNA Pol II bound at their promoters. The transcripts of these genes are almost entirely exported from the nucleolus. These results indicate that RNA Pol II dependent transcription in NADs can vary widely in different cell types, presumably dependent on the cell's developmental stage. Nucleolus-associated genes are likely to be distinguished marks reflecting the cell's metabolism.
Collapse
Affiliation(s)
- Soumya Roy Chowdhury
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Arunima Shilpi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | | |
Collapse
|
2
|
von Coburg E, Wedler M, Muino JM, Wolff C, Körber N, Dunst S, Liu S. Cell Painting PLUS: expanding the multiplexing capacity of Cell Painting-based phenotypic profiling using iterative staining-elution cycles. Nat Commun 2025; 16:3857. [PMID: 40274798 PMCID: PMC12022024 DOI: 10.1038/s41467-025-58765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Phenotypic changes in the morphology and internal organization of cells can indicate perturbations in cell functions. Therefore, imaging-based high-throughput phenotypic profiling (HTPP) applications such as Cell Painting (CP) play an important role in basic and translational research, drug discovery, and regulatory toxicology. Here we present the Cell Painting PLUS (CPP) assay, an efficient, robust and broadly applicable approach that further expands the versatility of available HTPP methods and offers additional options for addressing mode-of-action specific research questions. An iterative staining-elution cycle allows multiplexing of at least seven fluorescent dyes that label nine different subcellular compartments and organelles including the plasma membrane, actin cytoskeleton, cytoplasmic RNA, nucleoli, lysosomes, nuclear DNA, endoplasmic reticulum, mitochondria, and Golgi apparatus. In this way, CPP significantly expands the flexibility, customizability, and multiplexing capacity of the original CP method and, importantly, also improves the organelle-specificity and diversity of the phenotypic profiles due to the separate imaging and analysis of single dyes in individual channels.
Collapse
Affiliation(s)
- Elena von Coburg
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department of Food Chemistry, University of Potsdam, Potsdam, Germany
| | - Marlene Wedler
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Jose M Muino
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christopher Wolff
- Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Nils Körber
- Centre for Artificial Intelligence in Public Health Research, Robert Koch Institute, Berlin, Germany
| | - Sebastian Dunst
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| | - Shu Liu
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
3
|
Muñoz-Velasco I, Herrera-Escamilla AK, Vázquez-Salazar A. Nucleolar origins: challenging perspectives on evolution and function. Open Biol 2025; 15:240330. [PMID: 40068812 PMCID: PMC11896706 DOI: 10.1098/rsob.240330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
The nucleolus, once considered a mere 'ribosome factory', is now recognized as a dynamic hub influencing nearly every aspect of cellular life, from genome organization to stress response and ageing. Despite being a hallmark of eukaryotic cells, recent discoveries reveal that even prokaryotes exhibit nucleolus-like structures, hinting at ancient origins for nucleolar functions. This review explores the evolutionary journey of the nucleolus, tracing its roots back to early life and examining its structural and functional diversity across domains. We highlight key nucleolar proteins that play vital roles not only in ribosome production but also in regulating cell cycle, DNA repair and cellular stress, linking nucleolar activity directly to health and disease. Dysfunctions in nucleolar processes are implicated in cancer, ribosomopathies and neurodegenerative disorders, positioning the nucleolus as a critical target for innovative therapeutic strategies. As advanced imaging and molecular techniques unlock deeper insights into both canonical and mysterious non-canonical roles, the nucleolus stands as a model for how cellular microenvironments can evolve to meet complex biological demands. By addressing open questions surrounding the evolution of the nucleolus, its organization and diverse functions, the ideas presented here aim to contribute to the ongoing discussion, challenging traditional paradigms and suggesting new avenues for uncovering the fundamental principles that drive cellular life.
Collapse
Affiliation(s)
- Israel Muñoz-Velasco
- Departamento de Biología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Chen X, Song X, Zheng X, Qian T, Zhang B, Wu L, Lian Q, Chen J, Luo Q, Xu W, Peng L, Xie C. Nucleolar NOL9 regulated by DNA methylation promotes hepatocellular carcinoma growth through activation of Wnt/β-catenin signaling pathway. Cell Death Dis 2025; 16:100. [PMID: 39955289 PMCID: PMC11830072 DOI: 10.1038/s41419-025-07393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Ribosome biogenesis (RiboSis) and ribosomal stress are critical in tumor progression, positioning RiboSis as a promising therapeutic target for cancer treatment and for overcoming drug resistance. In this study, we examined the role of RiboSis in the progression from hepatitis B virus (HBV) infection to HBV-related hepatocellular carcinoma (HCC), focusing specifically on nucleolar protein 9 (NOL9) and its influence on HCC pathogenesis and therapeutic response. Our findings showed that NOL9 was significantly upregulated in HCC tissues, correlating with larger tumor sizes and more advanced pathological grades. High levels of NOL9 expression were associated with unfavorable prognosis in both the TCGA-LIHC and our HCC cohorts. Functional assays indicated that NOL9 regulated HCC cell proliferation and apoptosis; specifically, NOL9 knockdown inhibited cell proliferation and promoted apoptosis, while overexpression enhanced these processes. In vivo studies confirmed that NOL9 depletion reduced tumor growth. Mechanistically, NOL9 expression was regulated by DNA methylation and the transcription factor ZNF384. Our DNA methylation analysis revealed an inverse correlation between NOL9 expression and methylation at specific CpG sites, implicating DNMT1 in its epigenetic regulation. Additionally, NOL9-mediated cell proliferation was dependent on activation of the Wnt/β-catenin signaling pathway. This study highlights the multifaceted role of NOL9 in HCC pathogenesis, underscoring its potential as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xiyao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xin Song
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xingrong Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tinglin Qian
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Boxiang Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lina Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qinghai Lian
- Department of Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jia Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qiumin Luo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenxiong Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
brown TJ, Pichurin J, Parrado CR, Kabeche L, Baserga SJ. A role for the kinetochore protein, NUF2, in ribosome biogenesis. Mol Biol Cell 2025; 36:ar16. [PMID: 39705402 PMCID: PMC11809303 DOI: 10.1091/mbc.e24-08-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024] Open
Abstract
Ribosome biogenesis (RB) is an intricate and evolutionarily conserved process that takes place mainly in the nucleolus and is required for eukaryotic cells to maintain homeostasis, grow in size, and divide. Our laboratory has identified the NUF2 protein, part of the mitotic kinetochore, in a genome-wide siRNA screen for proteins required for making ribosomes in MCF10A human breast epithelial cells. After rigorous validation and using several biochemical and cell-based assays, we find a role for NUF2 in pre-rRNA transcription, the primary and rate-limiting step of RB. siRNA depletion of other components of the NUF2 kinetochore sub-complex, NDC80, SPC24, and SPC25, also reduce pre-rRNA transcription. Interestingly, essential protein components for pre-rRNA transcription, including the largest subunit of RNA polymerase I, POLR1A, are reduced upon siRNA depletion of NUF2 and its protein partners. Their reduced levels are a likely mechanism for the decrease in pre-rRNA transcription. siRNA depletion of NUF2 and NDC80 also cause increased TP53 and CDKN1A (p21) mRNA levels, which can be restored by codepletion of RPL5, indicating activation of the nucleolar stress pathway (NSP). These results reveal a new connection between proteins with a known role in mitosis to the function of the nucleolus in RB during interphase.
Collapse
Affiliation(s)
- ty j. brown
- Department of Genetics, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Jennifer Pichurin
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Carlos Ramirez Parrado
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Yale Cancer Biology Institute, Yale University and the Yale School of Medicine, West Haven, 06516 CT
| | - Susan J. Baserga
- Department of Genetics, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Department of Therapeutic Radiology, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| |
Collapse
|
6
|
Sheu-Gruttadauria J, Yan X, Stuurman N, Vale RD, Floor SN. Nucleolar dynamics are determined by the ordered assembly of the ribosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559432. [PMID: 37808656 PMCID: PMC10557630 DOI: 10.1101/2023.09.26.559432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Ribosome biogenesis occurs in the nucleolus, a nuclear biomolecular condensate that exhibits dynamic biophysical properties thought to be important for function. However, the relationship between ribosome assembly and nucleolar dynamics is incompletely understood. Here, we present a platform for high-throughput fluorescence recovery after photobleaching (HiT-FRAP), which we use to screen hundreds of genes for their impact on dynamics of the nucleolar scaffold nucleophosmin (NPM1). We find that scaffold dynamics and nucleolar morphology respond to disruptions in key stages of ribosome biogenesis. Accumulation of early ribosomal intermediates leads to nucleolar rigidification while late intermediates lead to increased fluidity. We map these biophysical changes to specific ribosomal intermediates and their affinity for NPM1. We also discover that disrupting mRNA processing impacts nucleolar dynamics and ribosome biogenesis. This work mechanistically ties ribosome assembly to the biophysical features of the nucleolus and enables study of how dynamics relate to function across other biomolecular condensates.
Collapse
Affiliation(s)
- Jessica Sheu-Gruttadauria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Xiaowei Yan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Department of Dermatology, Stanford, CA, USA
| | - Nico Stuurman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Altos Labs, Redwood City, CA, USA
| | - Ronald D. Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephen N. Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
McCool MA, Bryant CJ, Abriola L, Surovtseva YV, Baserga SJ. The cytidine deaminase APOBEC3A regulates nucleolar function to promote cell growth and ribosome biogenesis. PLoS Biol 2024; 22:e3002718. [PMID: 38976757 PMCID: PMC11257408 DOI: 10.1371/journal.pbio.3002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Cancer initiates as a consequence of genomic mutations and its subsequent progression relies in part on increased production of ribosomes to maintain high levels of protein synthesis for unchecked cell growth. Recently, cytidine deaminases have been uncovered as sources of mutagenesis in cancer. In an attempt to form a connection between these 2 cancer driving processes, we interrogated the cytidine deaminase family of proteins for potential roles in human ribosome biogenesis. We identified and validated APOBEC3A and APOBEC4 as novel ribosome biogenesis factors through our laboratory's established screening platform for the discovery of regulators of nucleolar function in MCF10A cells. Through siRNA depletion experiments, we highlight APOBEC3A's requirement in making ribosomes and specific role within the processing and maturation steps that form the large subunit 5.8S and 28S ribosomal (r)RNAs. We demonstrate that a subset of APOBEC3A resides within the nucleolus and associates with critical ribosome biogenesis factors. Mechanistic insight was revealed by transient overexpression of both wild-type and a catalytically dead mutated APOBEC3A, which both increase cell growth and protein synthesis. Through an innovative nuclear RNA sequencing methodology, we identify only modest predicted APOBEC3A C-to-U target sites on the pre-rRNA and pre-mRNAs. Our work reveals a potential direct role for APOBEC3A in ribosome biogenesis likely independent of its editing function. More broadly, we found an additional function of APOBEC3A in cancer pathology through its function in ribosome biogenesis, expanding its relevance as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Mason A. McCool
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Carson J. Bryant
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Yulia V. Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Susan J. Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
8
|
Cockrell AJ, Lange JJ, Wood C, Mattingly M, McCroskey SM, Bradford WD, Conkright-Fincham J, Weems L, Guo MS, Gerton JL. Regulators of rDNA array morphology in fission yeast. PLoS Genet 2024; 20:e1011331. [PMID: 38968290 PMCID: PMC11253961 DOI: 10.1371/journal.pgen.1011331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024] Open
Abstract
Nucleolar morphology is a well-established indicator of ribosome biogenesis activity that has served as the foundation of many screens investigating ribosome production. Missing from this field of study is a broad-scale investigation of the regulation of ribosomal DNA morphology, despite the essential role of rRNA gene transcription in modulating ribosome output. We hypothesized that the morphology of rDNA arrays reflects ribosome biogenesis activity. We established GapR-GFP, a prokaryotic DNA-binding protein that recognizes transcriptionally-induced overtwisted DNA, as a live visual fluorescent marker for quantitative analysis of rDNA organization in Schizosaccharomyces pombe. We found that the morphology-which we refer to as spatial organization-of the rDNA arrays is dynamic throughout the cell cycle, under glucose starvation, RNA pol I inhibition, and TOR activation. Screening the haploid S. pombe Bioneer deletion collection for spatial organization phenotypes revealed large ribosomal protein (RPL) gene deletions that alter rDNA organization. Further work revealed RPL gene deletion mutants with altered rDNA organization also demonstrate resistance to the TOR inhibitor Torin1. A genetic analysis of signaling pathways essential for this resistance phenotype implicated many factors including a conserved MAPK, Pmk1, previously linked to extracellular stress responses. We propose RPL gene deletion triggers altered rDNA morphology due to compensatory changes in ribosome biogenesis via multiple signaling pathways, and we further suggest compensatory responses may contribute to human diseases such as ribosomopathies. Altogether, GapR-GFP is a powerful tool for live visual reporting on rDNA morphology under myriad conditions.
Collapse
Affiliation(s)
- Alexandria J. Cockrell
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Christopher Wood
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Mark Mattingly
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Scott M. McCroskey
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William D. Bradford
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Juliana Conkright-Fincham
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Promega Corporation, Madison, Wisconsin, United States of America
| | - Lauren Weems
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Monica S. Guo
- Department of Microbiology, University of Washington School of Medicine, Seattle, state of Washington, United States of America
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
9
|
Bryant CJ, McCool MA, Rosado González G, Abriola L, Surovtseva Y, Baserga S. Discovery of novel microRNA mimic repressors of ribosome biogenesis. Nucleic Acids Res 2024; 52:1988-2011. [PMID: 38197221 PMCID: PMC10899765 DOI: 10.1093/nar/gkad1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A (p21) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We provide evidence that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
Affiliation(s)
- Carson J Bryant
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mason A McCool
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
10
|
Zhang Y, Liang X, Luo S, Chen Y, Li Y, Ma C, Li N, Gao N. Visualizing the nucleoplasmic maturation of human pre-60S ribosomal particles. Cell Res 2023; 33:867-878. [PMID: 37491604 PMCID: PMC10624882 DOI: 10.1038/s41422-023-00853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Eukaryotic ribosome assembly is a highly orchestrated process that involves over two hundred protein factors. After early assembly events on nascent rRNA in the nucleolus, pre-60S particles undergo continuous maturation steps in the nucleoplasm, and prepare for nuclear export. Here, we report eleven cryo-EM structures of the nuclear pre-60S particles isolated from human cells through epitope-tagged GNL2, at resolutions of 2.8-4.3 Å. These high-resolution snapshots provide fine details for several major structural remodeling events at a virtual temporal resolution. Two new human nuclear factors, L10K and C11orf98, were also identified. Comparative structural analyses reveal that many assembly factors act as successive place holders to control the timing of factor association/dissociation events. They display multi-phasic binding properties for different domains and generate complex binding inter-dependencies as a means to guide the rRNA maturation process towards its mature conformation. Overall, our data reveal that nuclear assembly of human pre-60S particles is generally hierarchical with short branch pathways, and a few factors display specific roles as rRNA chaperones by confining rRNA helices locally to facilitate their folding, such as the C-terminal domain of SDAD1.
Collapse
Affiliation(s)
- Yunyang Zhang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Xiaomeng Liang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Sha Luo
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yan Chen
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yu Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Chengying Ma
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
11
|
Bryant CJ, McCool MA, Rosado-González GT, Abriola L, Surovtseva YV, Baserga SJ. Discovery of novel microRNA mimic repressors of ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.526327. [PMID: 36824951 PMCID: PMC9949135 DOI: 10.1101/2023.02.17.526327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2,603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A ( p21 ) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We discovered that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, directly and potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
|
12
|
Stossi F, Singh PK, Safari K, Marini M, Labate D, Mancini MA. High throughput microscopy and single cell phenotypic image-based analysis in toxicology and drug discovery. Biochem Pharmacol 2023; 216:115770. [PMID: 37660829 DOI: 10.1016/j.bcp.2023.115770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Measuring single cell responses to the universe of chemicals (drugs, natural products, environmental toxicants etc.) is of paramount importance to human health as phenotypic variability in sensing stimuli is a hallmark of biology that is considered during high throughput screening. One of the ways to approach this problem is via high throughput, microscopy-based assays coupled with multi-dimensional single cell analysis methods. Here, we will summarize some of the efforts in this vast and growing field, focusing on phenotypic screens (e.g., Cell Painting), single cell analytics and quality control, with particular attention to environmental toxicology and drug screening. We will discuss advantages and limitations of high throughput assays with various end points and levels of complexity.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA.
| | - Pankaj K Singh
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Kazem Safari
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Michela Marini
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Department of Mathematics, University of Houston, Houston, TX, USA
| | - Demetrio Labate
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Department of Mathematics, University of Houston, Houston, TX, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| |
Collapse
|
13
|
Harold C. All these screens that we've done: how functional genetic screens have informed our understanding of ribosome biogenesis. Biosci Rep 2023; 43:BSR20230631. [PMID: 37335083 PMCID: PMC10329186 DOI: 10.1042/bsr20230631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023] Open
Abstract
Ribosome biogenesis is the complex and essential process that ultimately leads to the synthesis of cellular proteins. Understanding each step of this essential process is imperative to increase our understanding of basic biology, but also more critically, to provide novel therapeutic avenues for genetic and developmental diseases such as ribosomopathies and cancers which can arise when this process is impaired. In recent years, significant advances in technology have made identifying and characterizing novel human regulators of ribosome biogenesis via high-content, high-throughput screens. Additionally, screening platforms have been used to discover novel therapeutics for cancer. These screens have uncovered a wealth of knowledge regarding novel proteins involved in human ribosome biogenesis, from the regulation of the transcription of the ribosomal RNA to global protein synthesis. Specifically, comparing the discovered proteins in these screens showed interesting connections between large ribosomal subunit (LSU) maturation factors and earlier steps in ribosome biogenesis, as well as overall nucleolar integrity. In this review, a discussion of the current standing of screens for human ribosome biogenesis factors through the lens of comparing the datasets and discussing the biological implications of the areas of overlap will be combined with a look toward other technologies and how they can be adapted to discover more factors involved in ribosome synthesis, and answer other outstanding questions in the field.
Collapse
Affiliation(s)
- Cecelia M. Harold
- Department of Genetics, Yale School of Medicine, New Haven, CT, U.S.A
| |
Collapse
|
14
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
McCool MA, Bryant CJ, Huang H, Ogawa LM, Farley-Barnes KI, Sondalle SB, Abriola L, Surovtseva YV, Baserga SJ. Human nucleolar protein 7 (NOL7) is required for early pre-rRNA accumulation and pre-18S rRNA processing. RNA Biol 2023; 20:257-271. [PMID: 37246770 PMCID: PMC10228412 DOI: 10.1080/15476286.2023.2217392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 05/30/2023] Open
Abstract
The main components of the essential cellular process of eukaryotic ribosome biogenesis are highly conserved from yeast to humans. Among these, the U3 Associated Proteins (UTPs) are a small subunit processome subcomplex that coordinate the first two steps of ribosome biogenesis in transcription and pre-18S processing. While we have identified the human counterparts of most of the yeast Utps, the homologs of yeast Utp9 and Bud21 (Utp16) have remained elusive. In this study, we find that NOL7 is the likely ortholog of Bud21. Previously described as a tumour suppressor through regulation of antiangiogenic transcripts, we now show that NOL7 is required for early pre-rRNA accumulation and pre-18S rRNA processing in human cells. These roles lead to decreased protein synthesis and induction of the nucleolar stress response upon NOL7 depletion. Beyond Bud21's nonessential role in yeast, we establish human NOL7 as an essential UTP that is necessary to maintain both early pre-rRNA levels and processing.
Collapse
Affiliation(s)
- Mason A. McCool
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Carson J. Bryant
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Hannah Huang
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Lisa M. Ogawa
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Katherine I. Farley-Barnes
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel B. Sondalle
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | | | - Susan J. Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Bari MW, Morishita Y, Kishigami S. Heterogeneity of nucleolar morphology in four-cell mouse embryos after IVF: association with developmental potential. Anim Sci J 2023; 94:e13907. [PMID: 38102887 DOI: 10.1111/asj.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
In mammals, around fertilization, the nucleolus of embryos transforms into the nucleolus precursor bodies (NPBs), which continue to mature until the blastocyst stage, leading to distinct morphological changes. In our study, we observed two types of nucleolar morphology in mouse in vitro fertilized embryos at the four-cell stage, which we refer to single nucleolus (SN) and multiple nucleoli (MN). To visualize nucleolar morphology, four-cell embryos were immunostained with anti-NOPP140 antibody. These embryos were categorized into five types based on the number of blastomeres carrying SN: SN4/MN0, SN3/MN1, SN2/MN2, SN1/MN3, and SN0/MN4, with percentages of 13, 27, 21, 23 and 9, respectively. Next, using a light microscope, we divided the four-cell in vitro fertilized embryos without fixation into two groups: those with at least two blastomeres displaying SN (SN embryos) and those without (MN embryos). Notably, significantly more SN embryos developed into blastocysts and offspring at 18.5 dpc compared with MN embryos. Furthermore, SN embryos displayed a higher NANOG-positive cell number at the blastocyst stage, significantly lower body and placental weights, resulting in a higher fetal/placental ratio. These findings suggest a close association between nucleolar state at the four-cell stage and subsequent developmental potential.
Collapse
Affiliation(s)
- Md Wasim Bari
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Japan
| | - Yoshiya Morishita
- Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi Kofu, Japan
| | - Satoshi Kishigami
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Japan
- Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi Kofu, Japan
- Center for advanced Assisted Reproductive Technologies, University of Yamanashi, Kofu, Japan
| |
Collapse
|
17
|
McCool MA, Buhagiar AF, Bryant CJ, Ogawa LM, Abriola L, Surovtseva YV, Baserga SJ. Human pre-60S assembly factors link rRNA transcription to pre-rRNA processing. RNA (NEW YORK, N.Y.) 2022; 29:rna.079149.122. [PMID: 36323459 PMCID: PMC9808572 DOI: 10.1261/rna.079149.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In eukaryotes, the nucleolus is the site of ribosome biosynthesis, an essential process in all cells. While human ribosome assembly is largely evolutionarily conserved, many of the regulatory details underlying its control and function have not yet been well-defined. The nucleolar protein RSL24D1 was originally identified as a factor important for 60S ribosomal subunit biogenesis. In addition, the PeBoW (BOP1-PES1-WDR12) complex has been well-defined as required for pre-28S rRNA processing and cell proliferation. In this study, we show that RSL24D1 depletion impairs both pre-ribosomal RNA (pre-rRNA) transcription and mature 28S rRNA production, leading to decreased protein synthesis and p53 stabilization in human cells. Surprisingly, each of the PeBoW complex members is also required for pre-rRNA transcription. We demonstrate that RSL24D1 and WDR12 co-immunoprecipitate with the RNA polymerase I subunit, RPA194, and regulate its steady state levels. These results uncover the dual role of RSL24D1 and the PeBoW complex in multiple steps of ribosome biogenesis, and provide evidence implicating large ribosomal subunit biogenesis factors in pre-rRNA transcription control.
Collapse
|
18
|
Ribosome-Directed Therapies in Cancer. Biomedicines 2022; 10:biomedicines10092088. [PMID: 36140189 PMCID: PMC9495564 DOI: 10.3390/biomedicines10092088] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/29/2022] Open
Abstract
The human ribosomes are the cellular machines that participate in protein synthesis, which is deeply affected during cancer transformation by different oncoproteins and is shown to provide cancer cell proliferation and therefore biomass. Cancer diseases are associated with an increase in ribosome biogenesis and mutation of ribosomal proteins. The ribosome represents an attractive anti-cancer therapy target and several strategies are used to identify specific drugs. Here we review the role of different drugs that may decrease ribosome biogenesis and cancer cell proliferation.
Collapse
|
19
|
Na Z, Dai X, Zheng SJ, Bryant CJ, Loh KH, Su H, Luo Y, Buhagiar AF, Cao X, Baserga SJ, Chen S, Slavoff SA. Mapping subcellular localizations of unannotated microproteins and alternative proteins with MicroID. Mol Cell 2022; 82:2900-2911.e7. [PMID: 35905735 PMCID: PMC9662605 DOI: 10.1016/j.molcel.2022.06.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022]
Abstract
Proteogenomic identification of translated small open reading frames has revealed thousands of previously unannotated, largely uncharacterized microproteins, or polypeptides of less than 100 amino acids, and alternative proteins (alt-proteins) that are co-encoded with canonical proteins and are often larger. The subcellular localizations of microproteins and alt-proteins are generally unknown but can have significant implications for their functions. Proximity biotinylation is an attractive approach to define the protein composition of subcellular compartments in cells and in animals. Here, we developed a high-throughput technology to map unannotated microproteins and alt-proteins to subcellular localizations by proximity biotinylation with TurboID (MicroID). More than 150 microproteins and alt-proteins are associated with subnuclear organelles. One alt-protein, alt-LAMA3, localizes to the nucleolus and functions in pre-rRNA transcription. We applied MicroID in a mouse model, validating expression of a conserved nuclear microprotein, and establishing MicroID for discovery of microproteins and alt-proteins in vivo.
Collapse
Affiliation(s)
- Zhenkun Na
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Xiaoyun Dai
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Shu-Jian Zheng
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Carson J Bryant
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA
| | - Ken H Loh
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Haomiao Su
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Yang Luo
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Amber F Buhagiar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA
| | - Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA.
| |
Collapse
|
20
|
Cao X, Khitun A, Harold CM, Bryant CJ, Zheng SJ, Baserga SJ, Slavoff SA. Nascent alt-protein chemoproteomics reveals a pre-60S assembly checkpoint inhibitor. Nat Chem Biol 2022; 18:643-651. [PMID: 35393574 PMCID: PMC9423127 DOI: 10.1038/s41589-022-01003-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022]
Abstract
Many unannotated microproteins and alternative proteins (alt-proteins) are coencoded with canonical proteins, but few of their functions are known. Motivated by the hypothesis that alt-proteins undergoing regulated synthesis could play important cellular roles, we developed a chemoproteomic pipeline to identify nascent alt-proteins in human cells. We identified 22 actively translated alt-proteins or N-terminal extensions, one of which is post-transcriptionally upregulated by DNA damage stress. We further defined a nucleolar, cell-cycle-regulated alt-protein that negatively regulates assembly of the pre-60S ribosomal subunit (MINAS-60). Depletion of MINAS-60 increases the amount of cytoplasmic 60S ribosomal subunit, upregulating global protein synthesis and cell proliferation. Mechanistically, MINAS-60 represses the rate of late-stage pre-60S assembly and export to the cytoplasm. Together, these results implicate MINAS-60 as a potential checkpoint inhibitor of pre-60S assembly and demonstrate that chemoproteomics enables hypothesis generation for uncharacterized alt-proteins.
Collapse
Affiliation(s)
- Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT, USA.,Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Alexandra Khitun
- Department of Chemistry, Yale University, New Haven, CT, USA.,Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Cecelia M Harold
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Carson J Bryant
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Shu-Jian Zheng
- Department of Chemistry, Yale University, New Haven, CT, USA.,Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT, USA. .,Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA. .,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
21
|
Dörner K, Badertscher L, Horváth B, Hollandi R, Molnár C, Fuhrer T, Meier R, Sárazová M, van den Heuvel J, Zamboni N, Horvath P, Kutay U. Genome-wide RNAi screen identifies novel players in human 60S subunit biogenesis including key enzymes of polyamine metabolism. Nucleic Acids Res 2022; 50:2872-2888. [PMID: 35150276 PMCID: PMC8934630 DOI: 10.1093/nar/gkac072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ribosome assembly is an essential process that is linked to human congenital diseases and tumorigenesis. While great progress has been made in deciphering mechanisms governing ribosome biogenesis in eukaryotes, an inventory of factors that support ribosome synthesis in human cells is still missing, in particular regarding the maturation of the large 60S subunit. Here, we performed a genome-wide RNAi screen using an imaging-based, single cell assay to unravel the cellular machinery promoting 60S subunit assembly in human cells. Our screen identified a group of 310 high confidence factors. These highlight the conservation of the process across eukaryotes and reveal the intricate connectivity of 60S subunit maturation with other key cellular processes, including splicing, translation, protein degradation, chromatin organization and transcription. Intriguingly, we also identified a cluster of hits comprising metabolic enzymes of the polyamine synthesis pathway. We demonstrate that polyamines, which have long been used as buffer additives to support ribosome assembly in vitro, are required for 60S maturation in living cells. Perturbation of polyamine metabolism results in early defects in 60S but not 40S subunit maturation. Collectively, our data reveal a novel function for polyamines in living cells and provide a rich source for future studies on ribosome synthesis.
Collapse
Affiliation(s)
- Kerstin Dörner
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Lukas Badertscher
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Bianka Horváth
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Réka Hollandi
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
| | - Csaba Molnár
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Roger Meier
- ScopeM, ETH Zürich, 8093 Zürich, Switzerland
| | - Marie Sárazová
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jasmin van den Heuvel
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
22
|
Bryant CJ, McCool MA, Abriola L, Surovtseva YV, Baserga SJ. A high-throughput assay for directly monitoring nucleolar rRNA biogenesis. Open Biol 2022; 12:210305. [PMID: 35078352 PMCID: PMC8790372 DOI: 10.1098/rsob.210305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies of the regulation of nucleolar function are critical for ascertaining clearer insights into the basic biological underpinnings of ribosome biogenesis (RB), and for future development of therapeutics to treat cancer and ribosomopathies. A number of high-throughput primary assays based on morphological alterations of the nucleolus can indirectly identify hits affecting RB. However, there is a need for a more direct high-throughput assay for a nucleolar function to further evaluate hits. Previous reports have monitored nucleolar rRNA biogenesis using 5-ethynyl uridine (5-EU) in low-throughput. We report a miniaturized, high-throughput 5-EU assay that enables specific calculation of nucleolar rRNA biogenesis inhibition, based on co-staining of the nucleolar protein fibrillarin (FBL). The assay uses two siRNA controls: a negative non-targeting siRNA control and a positive siRNA control targeting RNA Polymerase 1 (RNAP1; POLR1A), and specifically quantifies median 5-EU signal within nucleoli. Maximum nuclear 5-EU signal can also be used to monitor the effects of putative small-molecule inhibitors of RNAP1, like BMH-21, or other treatment conditions that cause FBL dispersion. We validate the 5-EU assay on 68 predominately nucleolar hits from a high-throughput primary screen, showing that 58/68 hits significantly inhibit nucleolar rRNA biogenesis. Our new method establishes direct quantification of nucleolar function in high-throughput, facilitating closer study of RB in health and disease.
Collapse
Affiliation(s)
- Carson J. Bryant
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Mason A. McCool
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | | | - Susan J. Baserga
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA,Department of Genetics, Yale School of Medicine, New Haven, CT, USA,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Ribosomal RNA Transcription Regulation in Breast Cancer. Genes (Basel) 2021; 12:genes12040502. [PMID: 33805424 PMCID: PMC8066022 DOI: 10.3390/genes12040502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ribosome biogenesis is a complex process that is responsible for the formation of ribosomes and ultimately global protein synthesis. The first step in this process is the synthesis of the ribosomal RNA in the nucleolus, transcribed by RNA Polymerase I. Historically, abnormal nucleolar structure is indicative of poor cancer prognoses. In recent years, it has been shown that ribosome biogenesis, and rDNA transcription in particular, is dysregulated in cancer cells. Coupled with advancements in screening technology that allowed for the discovery of novel drugs targeting RNA Polymerase I, this transcriptional machinery is an increasingly viable target for cancer therapies. In this review, we discuss ribosome biogenesis in breast cancer and the different cellular pathways involved. Moreover, we discuss current therapeutics that have been found to affect rDNA transcription and more novel drugs that target rDNA transcription machinery as a promising avenue for breast cancer treatment.
Collapse
|