1
|
Yang Q, Zhang L, Sun D, Jie S, Tao X, Meng Q, Luo F. Dietary riboflavin (vitamin B2) intake and osteoporosis in U.S. female adults: unveiling of association and exploration of potential molecular mechanisms. Nutr J 2025; 24:53. [PMID: 40189526 PMCID: PMC11974234 DOI: 10.1186/s12937-025-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/21/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Osteoporosis characterized by deteriorating bone loss is becoming one of the serious health problems globally. Vitamin B2, also known as riboflavin, exhibiting multiple prominent physiological traits such as antioxidant effects, reducing lipid peroxidation and regulating glutathione redox cycle, allows it to be a potential agent to improve bone loss. However, the relationship between dietary vitamin B2 intake and osteoporosis remains unelucidated. The objective of this study was to explore the association between the dietary intake of vitamin B2 and bone loss in the U.S. female adults using the National Health and Nutrition Examination Survey (NHANES) database. METHODS Female participants with complete information on dietary vitamin B2 intake, dual-energy X-ray absorptiometry, and other essential covariates from NHANES database were included in the current study. Multivariable logistic regression and linear regression analyses were conducted to assess the relationships of dietary vitamin B2 intake with osteoporosis and bone mineral density (BMD) levels, respectively. Subgroup analyses, interaction tests, and restricted cubic spline (RCS) regression analyses were further used to verify the stability, robustness and potential nonlinearity of the association. Mediation analysis was performed to probe the role of serum alkaline phosphatase (ALP) in the aforementioned relationship, and the network pharmacology analysis was also conducted to determine the potential pathways and key targets for vitamin B2 regulating bone health. RESULTS A total of 4, 241 female participants from four NHANES cycles were included in this study. After multivariate adjustment, the intake of vitamin B2 was beneficially associated with reduced risk for femur osteoporosis (ORQ4 vs. Q1=0.613; 95%CI: 0.454-0.829). A higher intake of vitamin B2 (quartile 4) was significantly correlated with decreased risk of reduced femoral BMD levels, with the β being 0.020 (95%CI: 0.007-0.033), 0.015 (95%CI: 0.002-0.027), 0.020 (95%CI: 0.009-0.031) and 0.022 (95%CI: 0.006-0.037) for the BMD of total femur, femoral neck, trochanter, and intertrochanter, respectively (all P value < 0.05). Covariate total MET was found to modify the association between vitamin B2 intake and osteoporosis (P interaction = 0.0364), with the aforementioned relationship being more pronounced in the subgroup of insufficiently active individuals. Furthermore, RCS analysis revealed that vitamin B2 intake was positively and linearly associated with reduced risk for femoral OP and increased BMD levels of total femur, trochanter and intertrochanter, while positively and nonlinearly correlated with increased BMD level of femoral neck. Additionally, the association between vitamin B2 intake, osteoporosis and BMD levels was mediated by ALP, with a mediation proportion of 12.43%, 7.58%, 12.17%, 7.64%, and 6.99% for OP, total femur, femoral neck, trochanter, and intertrochanter BMD, respectively. Finally, network pharmacology analysis indicated that vitamin B2 regulating bone health mainly through pathways like HIF-1 signaling pathway, longevity regulating pathway, p53 signaling pathway, etc. CONCLUSIONS: Higher intake of vitamin B2 is positively associated with reduced risks for femoral osteoporosis and bone loss. Vitamin B2 may represent a modifiable lifestyle factor for the prevention and management of osteoporosis.
Collapse
Affiliation(s)
- QianKun Yang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Li Zhang
- Department of Hematology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No.136 of Zhong Shan Second Road, YuZhong District, Chongqing, 400014, China
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No.136 of Zhong Shan Second Road, YuZhong District, Chongqing, 400014, China
| | - Dong Sun
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Shen Jie
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - XiaoLiang Tao
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Qing Meng
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550000, China
| | - Fei Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), No.29 Gaotanyan St., Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
2
|
Wang Z, Sun W, Zhang K, Ke X, Wang Z. New insights into the relationship of mitochondrial metabolism and atherosclerosis. Cell Signal 2025; 127:111580. [PMID: 39732307 DOI: 10.1016/j.cellsig.2024.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Atherosclerotic cardiovascular and cerebrovascular diseases are the number one killer of human health. In view of the important role of mitochondria in the formation and evolution of atherosclerosis, our manuscript aims to comprehensively elaborate the relationship between mitochondria and the formation and evolution of atherosclerosis from the aspects of mitochondrial dynamics, mitochondria-organelle interaction (communication), mitochondria and cell death, mitochondria and vascular smooth muscle cell phenotypic switch, etc., which is combined with genome, transcriptome and proteome, in order to provide new ideas for the pathogenesis of atherosclerosis and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Zexun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China
| | - Wangqing Sun
- Department of Radiology, Yixing Tumor Hospital, Yixing 214200, China
| | - Kai Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Xianjin Ke
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
3
|
Osumi T, Nagano T, Iwasaki T, Nakanishi J, Miyazawa K, Kamada S. Lysine-specific demethylase 1 (LSD1) suppresses cellular senescence by riboflavin uptake-dependent demethylation activity. Sci Rep 2025; 15:6525. [PMID: 39988719 PMCID: PMC11847913 DOI: 10.1038/s41598-025-91004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/17/2025] [Indexed: 02/25/2025] Open
Abstract
Cellular senescence is defined as a permanent proliferation arrest caused by various stresses, including DNA damage. We have recently identified the riboflavin transporter SLC52A1, whose expression is increased in response to senescence-inducing stimuli. Interestingly, increased expression of SLC52A1 suppresses cellular senescence through the uptake of riboflavin and an increase in intracellular flavin adenine dinucleotide (FAD), an enzyme cofactor synthesized from riboflavin. However, how FAD suppresses cellular senescence has not been fully elucidated. Therefore, in this study, we focused on lysine-specific demethylase 1 (LSD1), which uses FAD as a cofactor. First, we found that LSD1 inhibition promoted DNA damage-induced cellular senescence, whereas ectopic expression of LSD1 suppressed cellular senescence, suggesting that LSD1 suppresses senescence. In addition, the demethylation activity of LSD1 against histone H3 and p53 was increased by senescence-inducing stress in a riboflavin uptake-dependent manner. Furthermore, it was revealed that the LSD1 demethylation activity was required for suppression of pro-senescence genes Sirtuin-4 and p21 whose expression is modified by methylation status of histone H3 and possibly p53, respectively. Collectively, these results suggest that the FAD increase by senescence-inducing stress leads to LSD1-mediated demethylation of histone H3 and p53, which results in the suppression of pro-senescence genes to inhibit senescence induction.
Collapse
Affiliation(s)
- Taiichi Osumi
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Taiki Nagano
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Tetsushi Iwasaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Jotaro Nakanishi
- MIRAI Technology Institute, Business Core Technology Center, Shiseido Co., LTD, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Kazuyuki Miyazawa
- MIRAI Technology Institute, Business Core Technology Center, Shiseido Co., LTD, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Shinji Kamada
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
4
|
Izadi M, Sadri N, Abdi A, Raeis Zadeh MM, Sadatipour S, Baghdadi G, Jalaei D, Tahmasebi S. Harnessing the fundamental roles of vitamins: the potent anti-oxidants in longevity. Biogerontology 2025; 26:58. [PMID: 39920477 DOI: 10.1007/s10522-025-10202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Aging is a complex and heterogeneous biological process characterized by telomere attrition, genomic instability, mitochondrial dysfunction, and disruption in nutrient sensing. Besides contributing to the progression of cancer, metabolic disorders, and neurodegenerative diseases, these manifestations of aging also adversely affect organ function. It is crucial to understand these mechanisms and identify interventions to modulate them to promote healthy aging and prevent age-related diseases. Vitamins have emerged as potential modulators of aging beyond their traditional roles in health maintenance. There is an increasing body of evidence that hormetic effects of vitamins are responsible for activating cellular stress responses, repair mechanisms, and homeostatic processes when mild stress is induced by certain vitamins. It is evident from this dual role that vitamins play a significant role in preventing frailty, promoting resilience, and mitigating age-related cellular damage. Moreover, addressing vitamin deficiencies in the elderly could have a significant impact on slowing aging and extending life expectancy. A review of recent advances in the role of vitamins in delaying aging processes and promoting multiorgan health is presented in this article. The purpose of this paper is to provide a comprehensive framework for using vitamins as strategic tools for fostering longevity and vitality. It offers a fresh perspective on vitamins' role in aging research by bridging biological mechanisms and clinical opportunities.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Raeis Zadeh
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Sadatipour
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazalnaz Baghdadi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Dorsa Jalaei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran.
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran.
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
6
|
Nisco A, Tolomeo M, Scalise M, Zanier K, Barile M. Exploring the impact of flavin homeostasis on cancer cell metabolism. Biochim Biophys Acta Rev Cancer 2024; 1879:189149. [PMID: 38971209 DOI: 10.1016/j.bbcan.2024.189149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Flavins and their associated proteins have recently emerged as compelling players in the landscape of cancer biology. Flavins, encompassing flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), serve as coenzymes in a multitude of cellular processes, such as metabolism, apoptosis, and cell proliferation. Their involvement in oxidative phosphorylation, redox homeostasis, and enzymatic reactions has long been recognized. However, recent research has unveiled an extended role for flavins in the context of cancer. In parallel, riboflavin transporters (RFVTs), FAD synthase (FADS), and riboflavin kinase (RFK) have gained prominence in cancer research. These proteins, responsible for riboflavin uptake, FAD biosynthesis, and FMN generation, are integral components of the cellular machinery that governs flavin homeostasis. Dysregulation in the expression/function of these proteins has been associated with various cancers, underscoring their potential as diagnostic markers, therapeutic targets, and key determinants of cancer cell behavior. This review embarks on a comprehensive exploration of the multifaceted role of flavins and of the flavoproteins involved in nucleus-mitochondria crosstalk in cancer. We journey through the influence of flavins on cancer cell energetics, the modulation of RFVTs in malignant transformation, the diagnostic and prognostic significance of FADS, and the implications of RFK in drug resistance and apoptosis. This review also underscores the potential of these molecules and processes as targets for novel diagnostic and therapeutic strategies, offering new avenues for the battle against this relentless disease.
Collapse
Affiliation(s)
- Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy; Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Katia Zanier
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy.
| |
Collapse
|
7
|
Pegoraro C, Domingo-Ortí I, Conejos-Sánchez I, Vicent MJ. Unlocking the Mitochondria for Nanomedicine-based Treatments: Overcoming Biological Barriers, Improving Designs, and Selecting Verification Techniques. Adv Drug Deliv Rev 2024; 207:115195. [PMID: 38325562 DOI: 10.1016/j.addr.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Enhanced targeting approaches will support the treatment of diseases associated with dysfunctional mitochondria, which play critical roles in energy generation and cell survival. Obstacles to mitochondria-specific targeting include the presence of distinct biological barriers and the need to pass through (or avoid) various cell internalization mechanisms. A range of studies have reported the design of mitochondrially-targeted nanomedicines that navigate the complex routes required to influence mitochondrial function; nonetheless, a significant journey lies ahead before mitochondrially-targeted nanomedicines become suitable for clinical use. Moving swiftly forward will require safety studies, in vivo assays confirming effectiveness, and methodologies to validate mitochondria-targeted nanomedicines' subcellular location/activity. From a nanomedicine standpoint, we describe the biological routes involved (from administration to arrival within the mitochondria), the features influencing rational design, and the techniques used to identify/validate successful targeting. Overall, rationally-designed mitochondria-targeted-based nanomedicines hold great promise for precise subcellular therapeutic delivery.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inés Domingo-Ortí
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
8
|
Diwan B, Sharma R. Nutritional components as mitigators of cellular senescence in organismal aging: a comprehensive review. Food Sci Biotechnol 2022; 31:1089-1109. [PMID: 35756719 PMCID: PMC9206104 DOI: 10.1007/s10068-022-01114-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
The process of cellular senescence is rapidly emerging as a modulator of organismal aging and disease. Targeting the development and removal of senescent cells is considered a viable approach to achieving improved organismal healthspan and lifespan. Nutrition and health are intimately linked and an appropriate dietary regimen can greatly impact organismal response to stress and diseases including during aging. With a renewed focus on cellular senescence, emerging studies demonstrate that both primary and secondary nutritional elements such as carbohydrates, proteins, fatty acids, vitamins, minerals, polyphenols, and probiotics can influence multiple aspects of cellular senescence. The present review describes the recent molecular aspects of cellular senescence-mediated understanding of aging and then studies available evidence of the cellular senescence modulatory attributes of major and minor dietary elements. Underlying pathways and future research directions are deliberated to promote a nutrition-centric approach for targeting cellular senescence and thus improving human health and longevity.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| |
Collapse
|