1
|
Chomchai D, Leda M, Golding A, von Dassow G, Bement WM, Goryachev AB. Rho GTPase dynamics distinguish between models of cortical excitability. Curr Biol 2025; 35:1414-1421.e4. [PMID: 40010332 DOI: 10.1016/j.cub.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 01/06/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
The Rho GTPases pattern the cell cortex in a variety of fundamental cell-morphogenetic processes, including division, wound repair, and locomotion. It has recently become apparent that this patterning arises from the ability of the Rho GTPases to self-organize into static and migrating spots, contractile pulses, and propagating waves in cells from yeasts to mammals.1 These self-organizing Rho GTPase patterns have been explained by a variety of theoretical models that require multiple interacting positive and negative feedback loops. However, it is often difficult, if not impossible, to discriminate between different models simply because the available experimental data do not simultaneously capture the dynamics of multiple molecular concentrations and biomechanical variables at fine spatial and temporal resolution. Specifically, most studies typically provide either the total Rho GTPase signal or the Rho GTPase activity, as reported by various sensors, but not both. Therefore, it remains largely unknown how membrane accumulation of Rho GTPases (i.e., Rho membrane enrichment) is related to Rho activity. Here, we dissect the dynamics of RhoA by simultaneously imaging both total RhoA and active RhoA in propagating waves of Rho activity and F-actin polymerization.2,3,4,5 We find that within nascent waves, accumulation of active RhoA precedes that of total RhoA, and we exploit this finding to distinguish between two popular theoretical models previously used to explain propagating cortical Rho waves.
Collapse
Affiliation(s)
- Dominic Chomchai
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 250 N Mills St, Madison, WI 53706, USA; Center for Quantitative Imaging, University of Wisconsin-Madison, 250 N Mills St, Madison, WI 53706, USA; Department of Integrative Biology, University of Wisconsin-Madison, 250 N Mills St, Madison, WI 53706, USA
| | - Marcin Leda
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Max Born Crescent, EH9 3BF Edinburgh, UK
| | - Adriana Golding
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 250 N Mills St, Madison, WI 53706, USA; Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 1 Center Dr, Bethesda, MD 20892, USA
| | - George von Dassow
- Oregon Institute of Marine Biology, 63466 Boat Basin Road, Charleston, OR 97420, USA.
| | - William M Bement
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 250 N Mills St, Madison, WI 53706, USA; Center for Quantitative Imaging, University of Wisconsin-Madison, 250 N Mills St, Madison, WI 53706, USA; Department of Integrative Biology, University of Wisconsin-Madison, 250 N Mills St, Madison, WI 53706, USA.
| | - Andrew B Goryachev
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Max Born Crescent, EH9 3BF Edinburgh, UK.
| |
Collapse
|
2
|
Balaghi N, Fernandez-Gonzalez R. Waves of change: Dynamic actomyosin networks in embryonic development. Curr Opin Cell Biol 2024; 91:102435. [PMID: 39378575 DOI: 10.1016/j.ceb.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
As animals develop, molecules, cells, and cell ensembles move in beautifully orchestrated choreographies. Movement at each of these scales requires generation of mechanical force. In eukaryotic cells, the actomyosin cytoskeleton generates mechanical forces. Continuous advances in in vivo microscopy have enabled visualization and quantitative assessment of actomyosin dynamics and force generation, within and across cells, in living embryos. Recent studies reveal that actomyosin networks can form periodic waves in vivo. Here, we highlight contributions of actomyosin waves to molecular transport, cell movement, and cell coordination in developing embryos.
Collapse
Affiliation(s)
- Negar Balaghi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada. https://twitter.com/negberry
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
3
|
Murray EC, Hodge GM, Lee LS, Mitchell CAR, Lombardo AT. The Rho effector ARHGAP18 coordinates a Hippo pathway feedback loop through YAP and Merlin to regulate the cytoskeleton and epithelial cell polarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625473. [PMID: 39651219 PMCID: PMC11623603 DOI: 10.1101/2024.11.26.625473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The organization of the cell's cytoskeletal filaments is coordinated through a complex symphony of signaling cascades originating from internal and external cues. Two major actin regulatory pathways are signal transduction through Rho family GTPases and growth and proliferation signaling through the Hippo pathway. These two pathways act to define the actin cytoskeleton, controlling foundational cellular attributes such as morphology and polarity. In this study, we use human epithelial cells to investigate the interplay between the Hippo and Rho Family signaling pathways, which have predominantly been characterized as independent actin regulatory mechanisms. We identify that the RhoA effector, ARHGAP18, forms a complex with the Hippo pathway transcription factor YAP to address a long-standing enigma in the field. Using super resolution STORM microscopy, we characterize the changes in the actin cytoskeleton, on the single filament level, that arise from CRISPR/Cas9 knockout of ARHGAP18. We report that the loss of ARHGAP18 results in alterations of the cell that derive from both aberrant RhoA signaling and inappropriate nuclear localization of YAP. These findings indicate that the Hippo and Rho family GTPase signaling cascades are coordinated in their temporal and spatial control of the actin cytoskeleton.
Collapse
|
4
|
Chua XL, Tong CS, Su M, Xǔ XJ, Xiao S, Wu X, Wu M. Competition and synergy of Arp2/3 and formins in nucleating actin waves. Cell Rep 2024; 43:114423. [PMID: 38968072 PMCID: PMC11378572 DOI: 10.1016/j.celrep.2024.114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024] Open
Abstract
Actin assembly and dynamics are crucial for maintaining cell structure and changing physiological states. The broad impact of actin on various cellular processes makes it challenging to dissect the specific role of actin regulatory proteins. Using actin waves that propagate on the cortex of mast cells as a model, we discovered that formins (FMNL1 and mDia3) are recruited before the Arp2/3 complex in actin waves. GTPase Cdc42 interactions drive FMNL1 oscillations, with active Cdc42 and the constitutively active mutant of FMNL1 capable of forming waves on the plasma membrane independently of actin waves. Additionally, the delayed recruitment of Arp2/3 antagonizes FMNL1 and active Cdc42. This antagonism is not due to competition for monomeric actin but rather for their common upstream regulator, active Cdc42, whose levels are negatively regulated by Arp2/3 via SHIP1 recruitment. Collectively, our study highlights the complex feedback loops in the dynamic control of the actin cytoskeletal network.
Collapse
Affiliation(s)
- Xiang Le Chua
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore
| | - Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Shengping Xiao
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore
| | - Xudong Wu
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
5
|
Goryachev AB, Leda M. Actomyosin cortex: Inherently oscillatory? Curr Biol 2024; 34:R682-R684. [PMID: 39043140 DOI: 10.1016/j.cub.2024.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A new analysis of cytokinetic furrow ingression in the Caenorhabditis elegans zygote at high spatiotemporal resolution demonstrates that, rather than being a process of steady, spatially uniform constriction, furrow ingression is modulated by complex contractile oscillations that move around the furrow, possibly in the form of propagating waves.
Collapse
Affiliation(s)
- Andrew B Goryachev
- School of Biological Sciences, Institute of Cell Biology, Centre for Engineering Biology, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Marcin Leda
- School of Biological Sciences, Institute of Cell Biology, Centre for Engineering Biology, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
6
|
Werner ME, Ray DD, Breen C, Staddon MF, Jug F, Banerjee S, Maddox AS. Mechanical and biochemical feedback combine to generate complex contractile oscillations in cytokinesis. Curr Biol 2024; 34:3201-3214.e5. [PMID: 38991614 PMCID: PMC11634113 DOI: 10.1016/j.cub.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
The actomyosin cortex is an active material that generates force to drive shape changes via cytoskeletal remodeling. Cytokinesis is the essential cell division event during which a cortical actomyosin ring closes to separate two daughter cells. Our active gel theory predicted that actomyosin systems controlled by a biochemical oscillator and experiencing mechanical strain would exhibit complex spatiotemporal behavior. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we imaged the C. elegans embryo with unprecedented temporal resolution and discovered that sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Contractile oscillations exhibited a range of periodicities, including those much longer periods than the timescale of RhoA pulses, which was shorter in cytokinesis than in any other biological context. Modifying mechanical feedback in vivo or in silico revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Fast local ring ingression occurs where speed oscillations have long periods, likely due to increased local stresses and, therefore, mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico. We propose that downstream of initiation by pulsed RhoA activity, mechanical feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and, therefore, makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows for sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Thus, like biochemical feedback, mechanical feedback affords active materials responsiveness and robustness.
Collapse
Affiliation(s)
- Michael E Werner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dylan D Ray
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Coleman Breen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael F Staddon
- Center for Systems Biology Dresden, Max Planck Institute for the Physics of Complex Systems, and Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Florian Jug
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Jackson JA, Denk-Lobnig M, Kitzinger KA, Martin AC. Change in RhoGAP and RhoGEF availability drives transitions in cortical patterning and excitability in Drosophila. Curr Biol 2024; 34:2132-2146.e5. [PMID: 38688282 PMCID: PMC11111359 DOI: 10.1016/j.cub.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. Although mechanisms have been established for individual cells' dynamic behaviors, the mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a Rho guanine nucleotide exchange factor (RhoGEF) and Rho GTPase activating protein (RhoGAP) pair required for actomyosin waves in egg chambers. Specifically, depletion of the RhoGEF, Ect2, or the RhoGAP, RhoGAP15B, disrupted actomyosin wave induction, and both proteins relocalized from the nucleus to the cortex preceding wave formation. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair, RhoGEF2 and Cumberland GAP (C-GAP), resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly by ∼4 s. We found that C-GAP was recruited to actomyosin waves, and disrupting F-actin polymerization altered the spatial organization of both RhoA signaling and the cytoskeleton in waves. In addition, disrupting F-actin dynamics increased wave period and width, consistent with a possible role for F-actin in promoting delayed negative feedback. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types, such as epithelial and syncytial cells.
Collapse
Affiliation(s)
- Jonathan A Jackson
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Graduate Program in Biophysics, Harvard University, 86 Brattle Street, Cambridge, MA 02138, USA
| | - Marlis Denk-Lobnig
- Department of Biophysics, University of Michigan, 1109 Geddes Ave., Ann Arbor, MI 48109, USA
| | - Katherine A Kitzinger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Chomchai D, Leda M, Golding A, von Dassow G, Bement WM, Goryachev AB. Testing models of cell cortex wave generation by Rho GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591685. [PMID: 38746143 PMCID: PMC11092441 DOI: 10.1101/2024.04.29.591685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The Rho GTPases pattern the cell cortex in a variety of fundamental cell-morphogenetic processes including division, wound repair, and locomotion. It has recently become apparent that this patterning arises from the ability of the Rho GTPases to self-organize into static and migrating spots, contractile pulses, and propagating waves in cells from yeasts to mammals 1 . These self-organizing Rho GTPase patterns have been explained by a variety of theoretical models which require multiple interacting positive and negative feedback loops. However, it is often difficult, if not impossible, to discriminate between different models simply because the available experimental data do not simultaneously capture the dynamics of multiple molecular concentrations and biomechanical variables at fine spatial and temporal resolution. Specifically, most studies typically provide either the total Rho GTPase signal or the Rho GTPase activity as reported by various sensors, but not both. Therefore, it remains largely unknown how membrane accumulation of Rho GTPases (i.e., Rho membrane enrichment) is related to Rho activity. Here we dissect the dynamics of RhoA by simultaneously imaging both total RhoA and active RhoA in the regime of acute cortical excitability 2 , characterized by pronounced waves of Rho activity and F-actin polymerization 3-5 . We find that within nascent waves, accumulation of active RhoA precedes that of total RhoA, and we exploit this finding to distinguish between two popular theoretical models previously used to explain propagating cortical Rho waves.
Collapse
|
9
|
Bement WM, Goryachev AB, Miller AL, von Dassow G. Patterning of the cell cortex by Rho GTPases. Nat Rev Mol Cell Biol 2024; 25:290-308. [PMID: 38172611 DOI: 10.1038/s41580-023-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.
Collapse
Affiliation(s)
- William M Bement
- Center for Quantitative Cell Imaging, Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Andrew B Goryachev
- Center for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Ann L Miller
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
10
|
Sepaniac LA, Davenport NR, Bement WM. Bring the pain: wounding reveals a transition from cortical excitability to epithelial excitability in Xenopus embryos. Front Cell Dev Biol 2024; 11:1295569. [PMID: 38456169 PMCID: PMC10918254 DOI: 10.3389/fcell.2023.1295569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/08/2023] [Indexed: 03/09/2024] Open
Abstract
The cell cortex plays many critical roles, including interpreting and responding to internal and external signals. One behavior which supports a cell's ability to respond to both internal and externally-derived signaling is cortical excitability, wherein coupled positive and negative feedback loops generate waves of actin polymerization and depolymerization at the cortex. Cortical excitability is a highly conserved behavior, having been demonstrated in many cell types and organisms. One system well-suited to studying cortical excitability is Xenopus laevis, in which cortical excitability is easily monitored for many hours after fertilization. Indeed, recent investigations using X. laevis have furthered our understanding of the circuitry underlying cortical excitability and how it contributes to cytokinesis. Here, we describe the impact of wounding, which represents both a chemical and a physical signal, on cortical excitability. In early embryos (zygotes to early blastulae), we find that wounding results in a transient cessation ("freezing") of wave propagation followed by transport of frozen waves toward the wound site. We also find that wounding near cell-cell junctions results in the formation of an F-actin (actin filament)-based structure that pulls the junction toward the wound; at least part of this structure is based on frozen waves. In later embryos (late blastulae to gastrulae), we find that cortical excitability diminishes and is progressively replaced by epithelial excitability, a process in which wounded cells communicate with other cells via wave-like increases of calcium and apical F-actin. While the F-actin waves closely follow the calcium waves in space and time, under some conditions the actin wave can be uncoupled from the calcium wave, suggesting that they may be independently regulated by a common upstream signal. We conclude that as cortical excitability disappears from the level of the individual cell within the embryo, it is replaced by excitability at the level of the embryonic epithelium itself.
Collapse
Affiliation(s)
- Leslie A. Sepaniac
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Nicholas R. Davenport
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - William M. Bement
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Werner ME, Ray DD, Breen C, Staddon MF, Jug F, Banerjee S, Maddox AS. Mechanical positive feedback and biochemical negative feedback combine to generate complex contractile oscillations in cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569672. [PMID: 38076901 PMCID: PMC10705528 DOI: 10.1101/2023.12.01.569672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Contractile force generation by the cortical actomyosin cytoskeleton is essential for a multitude of biological processes. The actomyosin cortex behaves as an active material that drives local and large-scale shape changes via cytoskeletal remodeling in response to biochemical cues and feedback loops. Cytokinesis is the essential cell division event during which a cortical actomyosin ring generates contractile force to change cell shape and separate two daughter cells. Our recent work with active gel theory predicts that actomyosin systems under the control of a biochemical oscillator and experiencing mechanical strain will exhibit complex spatiotemporal behavior, but cytokinetic contractility was thought to be kinetically simple. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we used 4-dimensional imaging with unprecedented temporal resolution and discovered sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Quantification of ingression speed oscillations revealed wide ranges of oscillation period and amplitude. In the cytokinetic ring, activity of the master regulator RhoA pulsed with a timescale of approximately 20 seconds, shorter than that reported for any other biological context. Contractility oscillated with 20-second periodicity and with much longer periods. A combination of in vivo and in silico approaches to modify mechanical feedback revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Effective local ring ingression is characterized by slower speed oscillations, likely due to increased local stresses and therefore mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico . We propose that downstream of initiation by pulsed RhoA activity, mechanical positive feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and therefore makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Our work demonstrates that while biochemical feedback loops afford systems responsiveness and robustness, mechanical feedback must also be considered to describe and understand the behaviors of active materials in vivo .
Collapse
|
12
|
Nalbant P, Wagner J, Dehmelt L. Direct investigation of cell contraction signal networks by light-based perturbation methods. Pflugers Arch 2023; 475:1439-1452. [PMID: 37851146 DOI: 10.1007/s00424-023-02864-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023]
Abstract
Cell contraction plays an important role in many physiological and pathophysiological processes. This includes functions in skeletal, heart, and smooth muscle cells, which lead to highly coordinated contractions of multicellular assemblies, and functions in non-muscle cells, which are often highly localized in subcellular regions and transient in time. While the regulatory processes that control cell contraction in muscle cells are well understood, much less is known about cell contraction in non-muscle cells. In this review, we focus on the mechanisms that control cell contraction in space and time in non-muscle cells, and how they can be investigated by light-based methods. The review particularly focusses on signal networks and cytoskeletal components that together control subcellular contraction patterns to perform functions on the level of cells and tissues, such as directional migration and multicellular rearrangements during development. Key features of light-based methods that enable highly local and fast perturbations are highlighted, and how experimental strategies can capitalize on these features to uncover causal relationships in the complex signal networks that control cell contraction.
Collapse
Affiliation(s)
- Perihan Nalbant
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Room T03 R01 D33, Universitätsstrasse 2, 45141, Essen, Germany.
| | - Jessica Wagner
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Room T03 R01 D33, Universitätsstrasse 2, 45141, Essen, Germany
| | - Leif Dehmelt
- Department of Systemic Cell Biology, Fakultät für Chemie und Chemische Biologie, Max Planck Institute of Molecular Physiology, and Dortmund University of Technology, Room CP-02-157, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| |
Collapse
|
13
|
Tong CS, Xǔ XJ, Wu M. Periodicity, mixed-mode oscillations, and multiple timescales in a phosphoinositide-Rho GTPase network. Cell Rep 2023; 42:112857. [PMID: 37494180 DOI: 10.1016/j.celrep.2023.112857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
While rhythmic contractile behavior is commonly observed at the cellular cortex, the primary focus has been on excitable or periodic events described by simple activator-delayed inhibitor mechanisms. We show that Rho GTPase activation in nocodazole-treated mitotic cells exhibits both simple oscillations and complex mixed-mode oscillations. Rho oscillations with a 20- to 30-s period are regulated by phosphatidylinositol (3,4,5)-trisphosphate (PIP3) via an activator-delayed inhibitor mechanism, while a slow reaction with period of minutes is regulated by phosphatidylinositol 4-kinase via an activator-substrate depletion mechanism. Conversion from simple to complex oscillations can be induced by modulating PIP3 metabolism or altering membrane contact site protein E-Syt1. PTEN depletion results in a period-doubling intermediate, which, like mixed-mode oscillations, is an intermediate state toward chaos. In sum, this system operates at the edge of chaos. Small changes in phosphoinositide metabolism can confer cells with the flexibility to rapidly enter ordered states with different periodicities.
Collapse
Affiliation(s)
- Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
14
|
Beta C, Edelstein-Keshet L, Gov N, Yochelis A. From actin waves to mechanism and back: How theory aids biological understanding. eLife 2023; 12:e87181. [PMID: 37428017 DOI: 10.7554/elife.87181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arik Yochelis
- Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
15
|
Michaud A, Leda M, Swider ZT, Kim S, He J, Landino J, Valley JR, Huisken J, Goryachev AB, von Dassow G, Bement WM. A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4. J Cell Biol 2022; 221:e202203017. [PMID: 35708547 PMCID: PMC9206115 DOI: 10.1083/jcb.202203017] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023] Open
Abstract
Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood. We assessed the role of the Rho GAP RGA-3/4 in the cortical excitability that accompanies cytokinesis in both frog and starfish. RGA-3/4 localizes to the cytokinetic apparatus, "chases" Rho waves in an F-actin-dependent manner, and when coexpressed with the Rho GEF Ect2, is sufficient to convert the normally quiescent, immature Xenopus oocyte cortex into a dramatically excited state. Experiments and modeling show that changing the ratio of RGA-3/4 to Ect2 produces cortical behaviors ranging from pulses to complex waves of Rho activity. We conclude that RGA-3/4, Ect2, Rho, and F-actin form the core of a versatile circuit that drives a diverse range of cortical behaviors, and we demonstrate that the immature oocyte is a powerful model for characterizing these dynamics.
Collapse
Affiliation(s)
- Ani Michaud
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI
| | - Marcin Leda
- Center for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - Zachary T. Swider
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI
| | - Songeun Kim
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI
| | - Jiaye He
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI
| | - Jennifer Landino
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, MI
| | - Jenna R. Valley
- Oregon Institute of Marine Biology, University of Oregon, Charleston, OR
| | - Jan Huisken
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI
| | - Andrew B. Goryachev
- Center for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, Charleston, OR
| | - William M. Bement
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|