1
|
Suo C, Gao Y, Yang S, Zhang W, Li C, Ma L, Xu Y, Lei J, Ding C, Li H, Zhang H, Sun T. The Endocytosis Adaptor Sla1 Facilitates Drug Susceptibility and Fungal Pathogenesis Through Sla1-Efg1 Regulating System in Candida albicans. Infect Drug Resist 2024; 17:4577-4588. [PMID: 39464835 PMCID: PMC11512525 DOI: 10.2147/idr.s483623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction The role of endocytosis in Candida albicans drug-resistance and pathogenicity remains poorly understood, despite its importance as a fundamental component of intracellular trafficking. Objective In order to understand the role of endocytosis in Candida albicans cell wall integrity, drug resistance, and virulence. Methods Detection of intracellular endocytosis by FM4-64 staining; Scanning electron microscopy is used to detect cell wall components; Spot assay for detecting drug sensitivity; Co-ip is used to detect protein interactions. Results In this study, we found the functions of Sla1 in regulating endocytosis is conserved among pathogenic fungi. Our results also revealed that the deletion of the SLA1 gene altered cell wall properties, composition, and gene expression. In addition, we showed that C. albicans Sla1 was responsible for hyphal development in vitro and for fungal pathogenicity in a murine infection model. Intriguingly, sla1∆/∆ mutant demonstrated enhanced drug resistance, and Sla1 was found to interact with the transcription factor Efg1; the relationship between Sla1 and Efg1 impacts the expression of genes encoding components of the ergosterol biosynthesis pathway, including ERG1, EGR11, and ERG25. Discussion These findings have expanded our knowledge of the capabilities of Sla1 beyond its role as an endocytosis adapter and provided insights into a potential new therapeutic target for the treatment of fungal infections.
Collapse
Affiliation(s)
- Chenhao Suo
- Laboratory Animal Department, Northern Theater General Hospital, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Yiru Gao
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Sheng Yang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Wanli Zhang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Chao Li
- Department of Emergency Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Lanjing Ma
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Yingchun Xu
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, 100730, People’s Republic of China
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, People’s Republic of China
| | - Jianjun Lei
- Laboratory Animal Department, Northern Theater General Hospital, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Chen Ding
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Hailong Li
- Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - He Zhang
- Laboratory Animal Department, Northern Theater General Hospital, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Tianshu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, 100730, People’s Republic of China
- Clinical Biobank, Medical Research Center, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| |
Collapse
|
2
|
Cvrčková F, Ghosh R, Kočová H. Transmembrane formins as active cargoes of membrane trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3668-3684. [PMID: 38401146 PMCID: PMC11194305 DOI: 10.1093/jxb/erae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Formins are a large, evolutionarily old family of cytoskeletal regulators whose roles include actin capping and nucleation, as well as modulation of microtubule dynamics. The plant class I formin clade is characterized by a unique domain organization, as most of its members are transmembrane proteins with possible cell wall-binding motifs exposed to the extracytoplasmic space-a structure that appears to be a synapomorphy of the plant kingdom. While such transmembrane formins are traditionally considered mainly as plasmalemma-localized proteins contributing to the organization of the cell cortex, we review, from a cell biology perspective, the growing evidence that they can also, at least temporarily, reside (and in some cases also function) in endomembranes including secretory and endocytotic pathway compartments, the endoplasmic reticulum, the nuclear envelope, and the tonoplast. Based on this evidence, we propose that class I formins may thus serve as 'active cargoes' of membrane trafficking-membrane-embedded proteins that modulate the fate of endo- or exocytotic compartments while being transported by them.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Helena Kočová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| |
Collapse
|
3
|
Rioux DJ, Prosser DC. A CIE change in our understanding of endocytic mechanisms. Front Cell Dev Biol 2023; 11:1334798. [PMID: 38192364 PMCID: PMC10773762 DOI: 10.3389/fcell.2023.1334798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The past six decades have seen major advances in our understanding of endocytosis, ranging from descriptive studies based on electron microscopy to biochemical and genetic characterization of factors required for vesicle formation. Most studies focus on clathrin as the major coat protein; indeed, clathrin-mediated endocytosis (CME) is the primary pathway for internalization. Clathrin-independent (CIE) pathways also exist, although mechanistic understanding of these pathways remains comparatively elusive. Here, we discuss how early studies of CME shaped our understanding of endocytosis and describe recent advances in CIE, including pathways in model organisms that are poised to provide key insights into endocytic regulation.
Collapse
Affiliation(s)
- Daniel J. Rioux
- Life Sciences, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Derek C. Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|