1
|
Minakaki G, Safren N, Bustos BI, Lubbe SJ, Mencacci NE, Krainc D. Commander complex regulates lysosomal function and is implicated in Parkinson's disease risk. Science 2025; 388:204-211. [PMID: 40209002 DOI: 10.1126/science.adq6650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/02/2024] [Accepted: 02/12/2025] [Indexed: 04/12/2025]
Abstract
Variants in GBA1 resulting in decreased lysosomal glucocerebrosidase (GCase) activity are a common risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Incomplete penetrance of GBA1 variants suggests that additional genes contribute to PD and DLB manifestation. By using a pooled genome-wide CRISPR interference screen, we identified copper metabolism MURR1 domain-containing 3 (COMMD3) protein, a component of the COMMD/coiled-coil domain-containing protein 22 (CCDC22)/CCDC93 (CCC) and Commander complexes, as a modifier of GCase and lysosomal activity. Loss of COMMD3 increased the release of lysosomal proteins through extracellular vesicles, leading to their impaired delivery to endolysosomes and consequent lysosomal dysfunction. Rare variants in the Commander gene family were associated with increased PD risk. Thus, COMMD genes and related complexes regulate lysosomal homeostasis and may represent modifiers in PD and other neurodegenerative diseases associated with lysosomal dysfunction.
Collapse
Affiliation(s)
- Georgia Minakaki
- Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nathaniel Safren
- Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Bernabe I Bustos
- Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Steven J Lubbe
- Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Niccolò E Mencacci
- Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Xie L, Hao X, Xie J, Mo J, Yuan C, Chen W. Acetylated pelargonidin-3- O-glucoside alleviates hepatocyte lipid deposition through activating the AMPK-mediated lysosome-autophagy pathway and redox state. Food Funct 2024; 15:6929-6942. [PMID: 38659316 DOI: 10.1039/d4fo00185k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a worldwide public health issue, but a widely accepted therapy is still lacking until now. Anthocyanins are natural flavonoid compounds that possess various bioactivities, but their applications are limited due to their low bioavailability and stability. Acylated anthocyanins are reported to show higher stability, whereas their effects on NAFLD are still unclear. Herein, pelargonidin-3-O-(6''-acetyl)-glucoside (Ace Pg3G) was found to dose-dependently reduce intracellular lipid droplets and triglycerides, and improve cellular oxidative stress that accompanied lipid deposition. Besides, Ace Pg3G was proved to activate AMPK phosphorylation, thus stimulating AMPK-mediated lysosome-autophagy pathway to eliminate overloaded lipid. Further study unveiled that Ace Pg3G regulated genes related to lipid metabolism downstream of AMPK to inhibit lipid synthesis and accelerate lipid oxidation. Overall, this study provided the first evidence, to our best knowledge, that Ace Pg3G ameliorated free fatty acid-induced lipid deposition in hepatocytes through regulating AMPK-mediated autophagy pathways and redox state.
Collapse
Affiliation(s)
- Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xin Hao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|