1
|
Hussein BRM, El-Saghier SMM, Allam RM, Mohamed MFA, Amer AA. An efficient methodological approach for synthesis of selenopyridines: generation, reactions, anticancer activity, EGFR inhibitory activity and molecular docking studies. Mol Divers 2025; 29:519-534. [PMID: 38739230 PMCID: PMC11785687 DOI: 10.1007/s11030-024-10872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
In the present work, we successfully synthesized Se-alkyl selenopyridines 1 and 3, selenopheno[2,3-b]pyridine 2, and bis-selenopyridine 4 derivatives using an eco-friendly method by utilizing NaHSe instead of toxic hydrogen selenide. The effect of the temperature on the reaction was screening at various temperatures. The regiospecific reaction of selenopyridine 1 with bromine afforded an unexpected product 4,6-diamino-5-bromo-2-[(cyanomethyl)selenyl]-pyridine-3-carbonitrile (5), which was cyclized to selenopheno[2,3-b]pyridine (7) by refluxing in the presence of TEA. While its treatment with thiophenol and/or p-chlorothiophenol gave 8a, b. On the other hand, its reaction with aminothiophenol afforded 2-(benzo[d]-thiazol-2-yl)-5-bromoselenopheno[2,3-b]pyridine-3,4,6-triamine (9). Also, N-(2-cyano-4-methyl-5H-1-seleno-3,5,8-triazaacenaphthylen-7-yl)acetamide (11) and a novel series of selenoazo dyes 12a-d were synthesized by treatment of selenopheno[2,3-b]pyridine 2 with acetic anhydride and/or diazonium chlorides of aromatic amines, respectively. Then, we ascertained the potential activity of synthesized compounds against highly metastatic prostate cancer cells (PC-3) and osteosarcoma cells (MG-63) and found that 12a, 12b, 12c, and 12d were more cytotoxic than doxorubicin in both tested cell lines, showing nearly the same anticancer activity with IC50 values ranging from 2.59 ± 0.02 µM to 3.93 ± 0.23 µM. Mechanistically, the most potent compounds 12a and 12b proved to be potent EGFR inhibitors with IC50 values of 0.301 and 0.123 µM, respectively, compared to lapatinib as a positive reference (IC50 = 0.049 µM). Moreover, the docking results are in good agreement with the anticancer activity as well as the EGFR inhibitory activity, suggesting these two compounds as promising EGFR anticancer candidates.
Collapse
Affiliation(s)
- Bahgat R M Hussein
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Sham M M El-Saghier
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Rasha M Allam
- Pharmacology Department, National Research Centre, Giza, 11865, Egypt
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Amer A Amer
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
2
|
Liu X, Wang N, He Z, Chen C, Ma J, Liu X, Deng S, Xie L. Diallyl trisulfide inhibits osteosarcoma 143B cell migration, invasion and EMT by inducing autophagy. Heliyon 2024; 10:e26681. [PMID: 38434350 PMCID: PMC10907726 DOI: 10.1016/j.heliyon.2024.e26681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Background Diallyl trisulfide (DATS), a compound derived from garlic, has been demonstrated its anti-cancer properties. While it has been shown to inhibit the expression of epidermal growth factor receptor (EGFR) in various cancers, its effects on osteosarcoma (OS) cells remain unclear. This study aimed to investigate the impacts of DATS on OS cells growth, migration, invasion, epithelial-mesenchymal transition (EMT) and autophagy, as well as its underlying mechanisms which was involving in the EGFR/PI3K/AKT/mTOR pathway. Methods In this study, human osteosarcoma cells (143B) were treated with different concentrations of DATS (10, 50, 100 and 200 μM) for 24 and 48 h, respectively. Cell viability was measured using CCK8, the half lethal concentration was selected for the following experiments. Wound healing and transwell assays were performed to evaluate migration and invasion abilities, while flow cytometry was used to measure apoptosis. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and confocal imaging were employed to analyze the related mRNA and protein expression levels of epithelial-mesenchymal transition (EMT), EGFR/Phosphoinositide 3 kinase (PI3K)/AKT/Mammalian target of rapamycin (mTOR) signaling pathway and autophagy-related markers. Results DATS significantly inhibited proliferation, migration and EMT in osteosarcoma cells. Additionally, DATS promoted cell apoptosis and induced autophagy, which could be rescued by the autophagy inhibitor 3-methyladenine (3-MA). Moreover, DATS treatment led to the inactivation of the EGFR/PI3K/AKT/mTOR pathway in osteosarcoma cells. Conclusions This study demonstrated that DATS inhibited osteosarcoma cell growth, migration and EMT, but inducing apoptosis and autophagy. These effects were mediated by the inactivation of the EGFR/PI3K/AKT/mTOR signaling pathway. These findings suggested that DATS could serve as a potential therapeutic agent for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xiyu Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiwei He
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Chen
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng City, China
| | - Jun Ma
- Huai’an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai’an, China
| | - Xin Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shan Deng
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Xie
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Rahmadiani N, Norahmawati E, Endharti AT, Hambalie AO, Isma SPP. PD-L1, STAT3, IL6, and EGFR Immunoexpressions in High-Grade Osteosarcoma. Adv Orthop 2024; 2024:9036225. [PMID: 38434518 PMCID: PMC10907101 DOI: 10.1155/2024/9036225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Immunotherapy has been widely used in the treatment of various malignancies with satisfactory results. One of the agents for immunotherapy is an inhibitor of programmed cell death-1 and its ligands (PD-1 and PD-L1). However, attempts at utilizing PD-1/PD-L1 immunotherapy in osteosarcoma have not yielded favorable results. This may be due to differences in PD-L1 regulation and the immune landscape in osteosarcoma, as the mechanism is still poorly understood. Therefore, elucidating PD-L1 regulation in osteosarcoma is paramount in order to improve treatment results using immunotherapy. Methods This is a cross-sectional study conducted in the Department of Anatomical Pathology of Saiful Anwar Hospital using 33 paraffin blocks of confirmed cases of osteosarcoma. Immunohistochemical staining using PD-L1, STAT3, IL6, and EGFR was performed. Statistical analyses were subsequently performed on the immunoexpression data of these antibodies. Results PD-L1, STAT3, IL6, and EGFR expressions were found in 6 (18.2%), 6 (18.2%), 28 (84.8%), and 30 (90.9%) cases, respectively. There were significant correlations between PD-L1 and STAT3 (r = 0.620, p=<0.001), PD-L1 and EGFR (r = 0.449, p=0.009), as well as STAT3 and EGFR (r = 0.351, p=0.045). Conclusion The existence of a correlation between PD-L1, STAT3, and EGFR indicates the potential role of STAT3 and EGFR in PD-L1 regulation in osteosarcoma, which may become the basis for targeted therapy.
Collapse
Affiliation(s)
- Nayla Rahmadiani
- Department of Anatomical Pathology, Faculty of Medicine Universitas Brawijaya, Saiful Anwar General Hospital, Malang, Indonesia
| | - Eviana Norahmawati
- Department of Anatomical Pathology, Faculty of Medicine Universitas Brawijaya, Saiful Anwar General Hospital, Malang, Indonesia
| | - Agustina Tri Endharti
- Department of Biomedical Sciences, Faculty of Medicine Universitas Brawijaya, Malang, Indonesia
| | - Ailen Oktaviana Hambalie
- Department of Anatomical Pathology, Faculty of Medicine Universitas Brawijaya, Saiful Anwar General Hospital, Malang, Indonesia
| | - Satria Pandu Persada Isma
- Department of Orthopaedics and Traumatology, Faculty of Medicine Universitas Brawijaya, Saiful Anwar General Hospital, Malang, Indonesia
| |
Collapse
|
4
|
Detarya M, Mahalapbutr P, Waenphimai O, Kidoikhammouan S, Janeklang S, Sawanyawisuth K, Vaeteewoottacharn K, Seubwai W, Saengboonmee C, Thothaisong T, Pabuprapap W, Suksamrarn A, Wongkham S. Induction of apoptotic cell death of cholangiocarcinoma cells by tiliacorinine from Tiliacora triandra: A mechanistic insight. Biochim Biophys Acta Gen Subj 2023; 1867:130486. [PMID: 37813201 DOI: 10.1016/j.bbagen.2023.130486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) exhibits poor response to the present chemotherapeutic agents and frequently develops drug resistance. Finding novel anticancer drugs might enhance patient outcomes. Tiliacorinine, a bisbenzylisoquinoline alkaloid from the Thai medicinal plant Tiliacora triandra, effectively induced apoptosis of human CCA cell lines and inhibited tumor growth in mice. Here, we elucidate further the molecular mechanisms underlining the cytotoxicity of tiliacorinine and its implication in overcoming gemcitabine-resistance of CCA cells. METHODS Cytotoxicity of tiliacorinine against CCA cell lines was assessed using MTT assay. The molecular signaling was determined using Western blot analysis. Molecular docking simulations were applied to predict the binding affinity and orientation of tiliacorinine to the possible binding site(s) of the target proteins. RESULTS Tiliacorinine induced apoptotic cell death of CCA cells in a dose- and time-dependent manner. Tiliacorinine significantly suppressed the expression of anti-apoptotic proteins, Bcl-xL and XIAP; activated apoptotic machinery proteins, caspase-3, caspase-9, and PARP; and decreased the levels of pAkt and pSTAT3. EGF/EGFR activation model and molecular docking simulations revealed EGFR, Akt, and STAT3 as potent targets of tiliacorinine. Molecular docking simulations indicated a strong binding affinity of tiliacorinine to the ATP-binding pockets of EGFR, PI3K, Akt, JAK2, and SH2 domain of STAT3. Tiliacorinine could synergize with gemcitabine and restore the cytotoxicity of gemcitabine against gemcitabine-resistant CCA cells. CONCLUSION Tiliacorinine effectively induced apoptosis via binding and blocking the actions of EGFR, Akt, and STAT3. GENERAL SIGNIFICANCE Tiliacorinine is a novel multi-kinase inhibitor and possibly a potent anti-cancer agent, in cancers with high activation of EGFR.
Collapse
Affiliation(s)
- Marutpong Detarya
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Panupong Mahalapbutr
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Orawan Waenphimai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Somkid Janeklang
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanlayanee Sawanyawisuth
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kulthida Vaeteewoottacharn
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wunchana Seubwai
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Forensic Medicine, Faculty of Medicine, and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Teerawut Thothaisong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Wachirachai Pabuprapap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Sopit Wongkham
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
5
|
Bian J, Liu Y, Zhao X, Meng C, Zhang Y, Duan Y, Wang G. Research progress in the mechanism and treatment of osteosarcoma. Chin Med J (Engl) 2023; 136:2412-2420. [PMID: 37649421 PMCID: PMC10586865 DOI: 10.1097/cm9.0000000000002800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 09/01/2023] Open
Abstract
ABSTRACT Osteosarcoma (OS) is the most common primary malignant bone tumor that more commonly occurs in children and adolescents. The most commonly used treatment for OS is surgery combined with chemotherapy, but the treatment outcomes are typically unsatisfactory. High rates of metastasis and post-treatment recurrence rates are major challenges in the treatment of OS. This underlines the need for studying the in-depth characterization of the pathogenetic mechanisms of OS and development of more effective therapeutic modalities. Previous studies have demonstrated the important role of the bone microenvironment and the regulation of signaling pathways in the occurrence and development of OS. In this review, we discussed the available evidence pertaining to the mechanisms of OS development and identified therapeutic targets for OS. We also summarized the available treatment modalities for OS and identified future priorities for therapeutics research.
Collapse
Affiliation(s)
- Jichao Bian
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yang Liu
- Department of Pathology, The Second People's Hospital Of Jining, Jining, Shandong 272049, China
| | - Xiaowei Zhao
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Chunyang Meng
- Department of Spine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yuanmin Zhang
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yangmiao Duan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guodong Wang
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| |
Collapse
|
6
|
Nirala BK, Yamamichi T, Yustein JT. Deciphering the Signaling Mechanisms of Osteosarcoma Tumorigenesis. Int J Mol Sci 2023; 24:11367. [PMID: 37511127 PMCID: PMC10379831 DOI: 10.3390/ijms241411367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Osteosarcoma (OS) is the predominant primary bone tumor in the pediatric and adolescent populations. It has high metastatic potential, with the lungs being the most common site of metastasis. In contrast to many other sarcomas, OS lacks conserved translocations or genetic mutations; instead, it has heterogeneous abnormalities, including somatic DNA copy number alteration, ploidy, chromosomal amplification, and chromosomal loss and gain. Unfortunately, clinical outcomes have not significantly improved in over 30 years. Currently, no effective molecularly targeted therapies are available for this disease. Several genomic studies showed inactivation in the tumor suppressor genes, including p53, RB, and ATRX, and hyperactivation of the tumor promoter genes, including MYC and MDM2, in OS. Alterations in the major signaling pathways, including the PI3K/AKT/mTOR, JAK/STAT, Wnt/β-catenin, NOTCH, Hedgehog/Gli, TGF-β, RTKs, RANK/RANKL, and NF-κB signaling pathways, have been identified in OS development and metastasis. Although OS treatment is currently based on surgical excision and systematic multiagent therapies, several potential targeted therapies are in development. This review focuses on the major signaling pathways of OS, and we propose a biological rationale to consider novel and targeted therapies in the future.
Collapse
Affiliation(s)
| | | | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA; (B.K.N.); (T.Y.)
| |
Collapse
|
7
|
Hu M, Yan H, Li H, Feng Y, Sun W, Ren Y, Ma L, Zeng W, Huang F, Jiang Z, Dong H. Use of network pharmacology and molecular docking to explore the mechanism of action of curcuma in the treatment of osteosarcoma. Sci Rep 2023; 13:9569. [PMID: 37311820 DOI: 10.1038/s41598-023-36687-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Curcuma has been used as an adjuvant treatment for osteosarcoma (OS) due to its anticancer compounds. However, the underlying mechanism remains unclear. Therefore, this study aimed to explore the mechanism of action of curcuma in the treatment of OS using network pharmacology and molecular docking. In this study, anticancer compounds were obtained from relevant literature, and curcuma-related targets and OS treatment targets were obtained from public databases. Protein‒protein interaction networks were constructed to screen out the hub genes using the STRING database and Cytoscape software. Cluster analysis of the protein modules was then performed using the Cytoscape MCODE plugin. Furthermore, Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed for common targets among curcuma targets and OS-related targets using the DAVID database. Finally, molecular docking was performed, and the results were verified by Auto dock Tool and PyMOL software. Our research identified 11 potential active compounds, 141 potential therapeutic targets and 14 hub genes for curcuma. AKT1, TNF, STAT3, EGFR, and HSP90AA1 were the key targets closely related to the PI3K/Akt signaling pathways, HIF-1 signaling pathways, ErbB signaling pathways, and FOXO signaling pathways, which are involved in angiogenesis, cancer cell proliferation, metastasis, invasion, and chemotherapy resistance in the microenvironment of OS. Molecular docking suggested that the core compound had a strong affinity for key targets, with a binding energy of less than - 5 kJ/mol. The study showed that curcuma-mediated treatment of OS was a complex process involving multiple compounds, targets, and pathways. This study will enhance the understanding of how curcuma affects the proliferation and invasion of OS cells and reveal the potential molecular mechanism underlying the effect of curcuma on OS lung metastasis and chemotherapy resistance.
Collapse
Affiliation(s)
- Minhua Hu
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongsong Yan
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haishan Li
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanlan Feng
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weipeng Sun
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueyi Ren
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Luyao Ma
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenxing Zeng
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Huang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwei Jiang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hang Dong
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
8
|
Marshall SK, Saelim B, Taweesap M, Pachana V, Panrak Y, Makchuchit N, Jaroenpakdee P. Anti-EGFR Targeted Multifunctional I-131 Radio-Nanotherapeutic for Treating Osteosarcoma: In Vitro 3D Tumor Spheroid Model. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3517. [PMID: 36234645 PMCID: PMC9565722 DOI: 10.3390/nano12193517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The systemic delivery of doxorubicin (DOX) to treat osteosarcoma requires an adequate drug concentration to be effective, but in doing so, it raises the risk of increasing organ off-target toxicity and developing drug resistance. Herein, this study reveals a multiple therapeutic nanocarrier delivery platform that overcomes off-target toxicity by providing good specificity and imparting enhanced tumor penetration in a three-dimensional (3D) human MG-63 spheroid model. By synthesizing PEG-PLGA nanoparticles by the double emulsion method, encapsulating DOX and Na131I in the inner core, and conjugating with an epidermal growth factor receptor (EGFR) antibody, it is intended to specifically target human MG-63 cells. The nanocarrier is biocompatible with blood and has good stability characteristics. Na131I encapsulation efficiency was >96%, and radiochemical purity was >96% over 96 h. A DOX encapsulation efficacy of ~80% was achieved, with a drug loading efficiency of ~3%, and a sustained DOX release over 5 days. The nanocarrier EGFR antibody achieved a ~80-fold greater targeting efficacy to MG-63 cells (EGFR+) than fibroblast cells (EGFR−). The targeted multiple therapeutic DIE-NPs have a higher penetration and uptake of Na131I to the 3D model and a ~3-fold higher cytotoxicity than the DOX monotherapy (D-NPs). The co-administration of DOX and Na131I (DIE-NPs) disrupts DNA repair and generates free radicals resulting in DNA damage, triggering the activation of apoptosis pathways. This leads to inhibition of MG-63 cell proliferation and promotes cell cycle arrest in the G0/G1 phase. Furthermore, the PEGylated anti-EGFR functionalized DIE-NPs were found to be biocompatible with red blood cells and to have no adverse effects. This anti-EGFR targeted multifunctional I-131 radio-nanotherapeutic signifies a customizable specific targeted treatment for osteosarcoma.
Collapse
Affiliation(s)
- Suphalak Khamruang Marshall
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Molecular Imaging and Cyclotron Center, Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Boonyisa Saelim
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Maneerat Taweesap
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Verachai Pachana
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Yada Panrak
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Naritsara Makchuchit
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Passara Jaroenpakdee
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
9
|
Feng Z, Ou Y, Hao L. The roles of glycolysis in osteosarcoma. Front Pharmacol 2022; 13:950886. [PMID: 36059961 PMCID: PMC9428632 DOI: 10.3389/fphar.2022.950886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic reprogramming is of great significance in the progression of various cancers and is critical for cancer progression, diagnosis, and treatment. Cellular metabolic pathways mainly include glycolysis, fat metabolism, glutamine decomposition, and oxidative phosphorylation. In cancer cells, reprogramming metabolic pathways is used to meet the massive energy requirement for tumorigenesis and development. Metabolisms are also altered in malignant osteosarcoma (OS) cells. Among reprogrammed metabolisms, alterations in aerobic glycolysis are key to the massive biosynthesis and energy demands of OS cells to sustain their growth and metastasis. Numerous studies have demonstrated that compared to normal cells, glycolysis in OS cells under aerobic conditions is substantially enhanced to promote malignant behaviors such as proliferation, invasion, metastasis, and drug resistance of OS. Glycolysis in OS is closely related to various oncogenes and tumor suppressor genes, and numerous signaling pathways have been reported to be involved in the regulation of glycolysis. In recent years, a vast number of inhibitors and natural products have been discovered to inhibit OS progression by targeting glycolysis-related proteins. These potential inhibitors and natural products may be ideal candidates for the treatment of osteosarcoma following hundreds of preclinical and clinical trials. In this article, we explore key pathways, glycolysis enzymes, non-coding RNAs, inhibitors, and natural products regulating aerobic glycolysis in OS cells to gain a deeper understanding of the relationship between glycolysis and the progression of OS and discover novel therapeutic approaches targeting glycolytic metabolism in OS.
Collapse
|
10
|
Dana PM, Sadoughi F, Asemi Z, Yousefi B. Molecular signaling pathways as potential therapeutic targets in osteosarcoma. Curr Med Chem 2022; 29:4436-4444. [PMID: 35139778 DOI: 10.2174/0929867329666220209110009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Among primary bone malignancies, osteosarcoma (OS) is the most common form causing morbidity and mortality in both adults and children. The interesting point about this malignancy is that nearly 10-20% of its newly diagnosed cases have developed metastasis. This adds up to the fact that the survival rate of both metastatic and non-metastatic patients of osteosarcoma hasn't changed in the past 30 years and suggests that we need to revise our therapeutic options for OS. In recent years, diverse signaling pathways have drawn the attention of the scientific community since they can be great candidates for treating complicated diseases such as cancer. In this review, we have tried to explain the pathophysiology of osteosarcoma by the help of different signaling pathways taking part in its initiation/progression and investigate how this pathway can be targeted for providing more efficient methods.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
CAR T targets and microenvironmental barriers of osteosarcoma. Cytotherapy 2022; 24:567-576. [DOI: 10.1016/j.jcyt.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
|
12
|
Unraveling the IGF System Interactome in Sarcomas Exploits Novel Therapeutic Options. Cells 2021; 10:cells10082075. [PMID: 34440844 PMCID: PMC8392407 DOI: 10.3390/cells10082075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. In this review, we will initially highlight multiple mechanisms underlying IGF dysregulation in cancer and then focus on the impact of the IGF system and its complexity in sarcoma development and progression as well as response to anti-IGF therapies. We will also discuss the role of Ephrin receptors, Hippo pathway, BET proteins and CXCR4 signaling, as mediators of sarcoma malignancy and relevant interactors with the IGF system in tumor cells. A deeper understanding of these molecular interactions might provide the rationale for novel and more effective therapeutic combinations to treat sarcomas.
Collapse
|
13
|
Huang Z, Wang S, Wei H, Chen H, Shen R, Lin R, Wang X, Lan W, Lin R, Lin J. Inhibition of BUB1 suppresses tumorigenesis of osteosarcoma via blocking of PI3K/Akt and ERK pathways. J Cell Mol Med 2021; 25:8442-8453. [PMID: 34337852 PMCID: PMC8419163 DOI: 10.1111/jcmm.16805] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumour that mainly affects teenagers, with patients displaying poor prognosis. Budding uninhibited by benzimidazoles 1 (BUB1), a type of serine/threonine kinase that is linked to pro-tumorigenic phenomena, has not been well studied in OS. Hence, this study aimed to explore the role of BUB1 in OS. The expression of BUB1 in OS specimens and cell lines was assessed using immunohistochemistry and Western blot analysis. Univariate and multivariate analyses were applied to evaluate the impact of BUB1 on patient survival. Cell counting kit-8, wound-healing and Transwell assays, as well as flow cytometry, were used to investigate the influence of BUB1 inhibition on OS in vitro. Moreover, a tumour xenograft model was established to investigate the in vivo effect of BUB1 inhibition on OS tumour growth. Results showed that BUB1 was overexpressed in OS specimens and cell lines. Furthermore, BUB1 overexpression was closely associated with the poor clinical outcomes of patients with OS. Inhibition of BUB1 markedly suppressed cell proliferation and tumour growth, cell migration, invasion and induced cell apoptosis of OS by blocking the PI3K/Akt and ERK signalling pathways. Thus, our study suggested that overexpression of BUB1 protein contributed to poor survival of OS patients and that inhibition of BUB1 resulted in considerable anti-tumour activity associated with proliferation, migration, invasion and apoptosis of OS.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Orthopedics Research Institution, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shenglin Wang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hongxiang Wei
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rongkai Shen
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Renqin Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinwen Wang
- Department of Orthopedics, The people's Hospital of Jiangmen City, Southern Medical University, Jiangmen, China
| | - Wenbin Lan
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Rongjin Lin
- Department of Nursing, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianhua Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Orthopedics Research Institution, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|