1
|
Wei W, Li C, Zhang B, Huang D, Li Z, Gao J. Total Glucosides of Paeony Ameliorate Myocardial Injury in Chronic Heart Failure Rats by Suppressing PARP-1. J Cardiovasc Transl Res 2024; 17:388-402. [PMID: 37831380 PMCID: PMC11052853 DOI: 10.1007/s12265-023-10440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Total glucosides of paeony (TGP) have a potential protective effect on chronic heart failure (CHF) rats, but the mechanism remains unclear. PARP inhibition prevents the decrease in myocardial contractility. Therefore, we aim to investigate the effects and mechanisms of TGP on CHF and the role of PARP-1 in CHF. Left anterior descending ligation rats and adriamycin-treated H9C9 cells were used as CHF models, and captopril as a positive control for in vivo experiments. We found that TGP alleviated myocardial remodeling and improved cardiac morphology and function. TGP also reduced myocardial apoptosis and autophagy, decreased inflammatory factor release, and inhibited the PARP-1 and NF-κB proteins. Through cell transfection, we found that PAPR-1 knockdown inhibited NF-κB nuclear translocation. Additionally, TGP inhibited apoptosis, autophagy, and inflammation in CHF cells, while PARP-1 overexpression partially antagonized them. In conclusion, TGP has the potential to improve CHF and PARP-1 may be a potential target.
Collapse
Affiliation(s)
- Wenjuan Wei
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Caiyan Li
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Baoyong Zhang
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Deyun Huang
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Zheming Li
- College of Pharmacy, Hangzhou Medical College, No. 481, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| | - Jiaer Gao
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
2
|
Sohrabji F, Selvamani A. Sex differences in miRNA as therapies for ischemic stroke. Neurochem Int 2018; 127:56-63. [PMID: 30391509 DOI: 10.1016/j.neuint.2018.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/12/2023]
Abstract
MicroRNAs, a subset of non-coding RNAs, are present in virtually all tissues including body fluids and are global regulators of the transcriptome. In view of the expanding number of microRNAs and the large number of gene targets that each microRNA can potentially regulate, they have been compared to hormones in the scope of their effects. MicroRNA have been implicated as biomarkers for several diseases including stroke, as well as chronic conditions that are associated with stroke. Recent research has focused on manipulating miRNA to improve stroke outcomes. Although several miRNAs have been shown to have neuroprotective properties, the overwhelming majority of these studies have employed only male animals. This review will focus on two miRNAs, Let7f and mir363-3p, whose effectiveness as a stroke neuroprotectant is sex-specific.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX, 77807, USA.
| | - Amutha Selvamani
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| |
Collapse
|
3
|
Choleris E, Galea LAM, Sohrabji F, Frick KM. Sex differences in the brain: Implications for behavioral and biomedical research. Neurosci Biobehav Rev 2018; 85:126-145. [PMID: 29287628 PMCID: PMC5751942 DOI: 10.1016/j.neubiorev.2017.07.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/16/2017] [Indexed: 01/11/2023]
Abstract
Biological differences between males and females are found at multiple levels. However, females have too often been under-represented in behavioral neuroscience research, which has stymied the study of potential sex differences in neurobiology and behavior. This review focuses on the study of sex differences in the neurobiology of social behavior, memory, emotions, and recovery from brain injury, with particular emphasis on the role of estrogens in regulating forebrain function. This work, presented by the authors at the 2016 meeting of the International Behavioral Neuroscience Society, emphasizes varying approaches from several mammalian species in which sex differences have not only been documented, but also become the focus of efforts to understand the mechanistic basis underlying them. This information may provide readers with useful experimental tools to successfully address recently introduced regulations by granting agencies that either require (e.g. the National Institutes of Health in the United States and the Canadian Institutes of Health Research in Canada) or recommend (e.g. Horizon 2020 in Europe) the inclusion of both sexes in biomedical research.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Bldg. Room 4020, Guelph, ON N1G 2W1, Canada.
| | - Liisa A M Galea
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| |
Collapse
|
4
|
Sun D, Sun L, Xu Q, Wang H, Yang J, Yuan Y. Promoter Polymorphism of Toll-Like Receptor 4 is Associated with a Decreased Risk of Coronary Artery Disease: A Case-Control Study in the Chinese Han Population. Med Sci Monit 2017; 23:276-284. [PMID: 28092654 PMCID: PMC5266207 DOI: 10.12659/msm.899587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Coronary artery disease (CAD) is considered a chronic inflammatory disease of the blood vessels. Toll-like receptor 4 (TLR4) is a transmembrane receptor involved in inflammatory reactions. The aim of this study was to determine the association between polymorphisms in the promoter region and 3′-untranslated region (3′-UTR) of TLR4, and the associated CAD risk. Material/Methods This study enrolled 424 participants with CAD and 424 controls without CAD. The polymorphisms in the promoter region and 3′-UTR of TLR4 were identified from the HapMap database, including rs10116253, rs10983755, and rs11536889. Genomic DNA was extracted from peripheral blood. Polymerase chain reaction-restriction fragment length polymorphism was performed to identify genotype polymorphisms. Relative luciferase activity was measured using the dual-luciferase reporter assay system. Results TLR4 rs10116253 in the promoter region was associated with CAD risk. The variant (CC+TC) genotypes of rs10116253 were associated with a decreased CAD risk (OR 95% CI 0.73 (0.54–0.98), p=0.034). In the stratification analyses, the variant (CC+TC) genotypes of rs10116253 were observed to have a relationship with decreased CAD risk in the male subgroup (OR: 95% CI 0.68 (0.48–0.98), p=0.041). Moreover, the variant CC and (CC+TC) genotypes of rs10116253 were correlated with a decreased CAD risk in participants younger than 60-year-old (TC: OR (95% CI 0.62 (0.39–0.98), p=0.042; TC+CC: OR 95% CI 0.63 (0.41–0.98), p=0.039). Regarding rs10116253, the luciferase activity of the mutant C allele construct was lower than that of the wild T allele construct (5.215±0.009 vs. 5.304±0.041; p=0.087). Conclusions The results provided evidence of an association between the TLR4 rs10116253 in the promoter region and a reduced risk of CAD.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Tumor Etiology and Screening, Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Liping Sun
- Department of Tumor Etiology and Screening, Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Qian Xu
- Department of Tumor Etiology and Screening, Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Honghu Wang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jun Yang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yuan Yuan
- Department of Tumor Etiology and Screening, Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
5
|
Sohrabji F, Park MJ, Mahnke AH. Sex differences in stroke therapies. J Neurosci Res 2017; 95:681-691. [PMID: 27870437 PMCID: PMC5125551 DOI: 10.1002/jnr.23855] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 02/03/2023]
Abstract
Stroke is the fifth leading cause of death and acquired disability in aged populations. Women are disproportionally affected by stroke, having a higher incidence and worse outcomes than men. Numerous preclinical studies have discovered novel therapies for the treatment of stroke, but almost all of these have been shown to be unsuccessful in clinical trials. Despite known sex differences in occurrence and severity of stroke, few preclinical or clinical therapeutics take into account possible sex differences in treatment. Reanalysis of data from studies of tissue plasminogen activator (tPA), the only currently FDA-approved stroke therapy, has shown that tPA improves stroke outcomes for both sexes and also shows sexual dimorphism by more robust improvement in stroke outcome in females. Experimental evidence supports the inclusion of sex as a variable in the study of a number of novel stroke drugs and therapies, including preclinical studies of anti-inflammatory drugs (minocycline), stimulators of cell survival (insulin-like growth factor-1), and inhibitors of cell death pathways (pharmacological inhibition of poly[ADP-ribose] polymerase-1, nitric oxide production, and caspase activation) as well as in current clinical trials of stem cell therapy and cortical stimulation. Overall, study design and analysis in clinical trials as well as in preclinical studies must include both sexes equally, consider possible sex differences in the analyses, and report the differences/similarities in more systematic/structured ways to allow promising therapies for both sexes and increase stroke recovery. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Min Jung Park
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Amanda H Mahnke
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
6
|
Shrestha E, Hussein MA, Savas JN, Ouimet M, Barrett TJ, Leone S, Yates JR, Moore KJ, Fisher EA, Garabedian MJ. Poly(ADP-ribose) Polymerase 1 Represses Liver X Receptor-mediated ABCA1 Expression and Cholesterol Efflux in Macrophages. J Biol Chem 2016; 291:11172-84. [PMID: 27026705 DOI: 10.1074/jbc.m116.726729] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 11/06/2022] Open
Abstract
Liver X receptors (LXR) are oxysterol-activated nuclear receptors that play a central role in reverse cholesterol transport through up-regulation of ATP-binding cassette transporters (ABCA1 and ABCG1) that mediate cellular cholesterol efflux. Mouse models of atherosclerosis exhibit reduced atherosclerosis and enhanced regression of established plaques upon LXR activation. However, the coregulatory factors that affect LXR-dependent gene activation in macrophages remain to be elucidated. To identify novel regulators of LXR that modulate its activity, we used affinity purification and mass spectrometry to analyze nuclear LXRα complexes and identified poly(ADP-ribose) polymerase-1 (PARP-1) as an LXR-associated factor. In fact, PARP-1 interacted with both LXRα and LXRβ. Both depletion of PARP-1 and inhibition of PARP-1 activity augmented LXR ligand-induced ABCA1 expression in the RAW 264.7 macrophage line and primary bone marrow-derived macrophages but did not affect LXR-dependent expression of other target genes, ABCG1 and SREBP-1c. Chromatin immunoprecipitation experiments confirmed PARP-1 recruitment at the LXR response element in the promoter of the ABCA1 gene. Further, we demonstrated that LXR is poly(ADP-ribosyl)ated by PARP-1, a potential mechanism by which PARP-1 influences LXR function. Importantly, the PARP inhibitor 3-aminobenzamide enhanced macrophage ABCA1-mediated cholesterol efflux to the lipid-poor apolipoprotein AI. These findings shed light on the important role of PARP-1 on LXR-regulated lipid homeostasis. Understanding the interplay between PARP-1 and LXR may provide insights into developing novel therapeutics for treating atherosclerosis.
Collapse
Affiliation(s)
- Elina Shrestha
- From the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Maryem A Hussein
- From the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Jeffery N Savas
- the Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Mireille Ouimet
- the Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York 10016, and
| | - Tessa J Barrett
- the Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York 10016, and
| | - Sarah Leone
- From the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - John R Yates
- the Department of Chemical Physiology, Scripps Research Institute, La Jolla, California 92037
| | - Kathryn J Moore
- the Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York 10016, and
| | - Edward A Fisher
- the Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York 10016, and
| | - Michael J Garabedian
- From the Department of Microbiology, New York University School of Medicine, New York, New York 10016,
| |
Collapse
|
7
|
Guo YH, Chen L, He Y, Zhou Y, Fan C, Zhang Y, Ji GX, Qin Y, Zhang LY, Jia ZS. Construction and identification of a recombinant adenoviral vector expressing A2 and EGFP. Shijie Huaren Xiaohua Zazhi 2014; 22:1436-1441. [DOI: 10.11569/wcjd.v22.i10.1436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct an adenoviral vector expressing A20 and enhanced green fluorescent protein (EGFP) and evaluate its effects in human mononuclear cell line THP-1.
METHODS: A20 gene fragment was amplified by PCR and inserted to GV314 vector to obtain a recombinant shuttle plasmid pGV314-A20. The recombinant vector was amplified in competent cells DH5α. A recombinant adenovirus co-expressing A20 and EGFP was generated by homologous recombination and packaged via 293T cells. The adenovirus was transfected into THP-1 cells, and then the expression of protein A20 was detected by Western blot. The levels of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in the culture supernatants of lipopolysaccharides (LPS)-stimulated THP-1 cells were assessed by ELISA.
RESULTS: The recombinant vector was identified and confirmed by restriction enzyme digestion and DNA sequencing. The titer of packaged adenoviruses was 1 × 1011 pfu/L, and 293 cells infected with the adenovirus showed obvious ballooning. Western blot analysis indicated that A20 protein expression was increased in THP-1 cells transfected by the adenovirus. The levels of TNF-α and IL-6 in the supernatants declined significantly in the A20 group compared with the control group (P < 0.05).
CONCLUSION: A recombinant adenoviral vector which expresses A20 and EGFP has been successfully constructed, which lays a foundation for further study of anti-inflammatory function of A20.
Collapse
|
8
|
Xu S, Bai P, Little PJ, Liu P. Poly(ADP-ribose) polymerase 1 (PARP1) in atherosclerosis: from molecular mechanisms to therapeutic implications. Med Res Rev 2013; 34:644-75. [PMID: 24002940 DOI: 10.1002/med.21300] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribosyl)ation reactions, carried out by poly(ADP-ribose) polymerases (PARPs/ARTDs), are reversible posttranslational modifications impacting on numerous cellular processes (e.g., DNA repair, transcription, metabolism, or immune functions). PARP1 (EC 2.4.2.30), the founding member of PARPs, is particularly important for drug development for its role in DNA repair, cell death, and transcription of proinflammatory genes. Recent studies have established a novel concept that PARP1 is critically involved in the formation and destabilization of atherosclerotic plaques in experimental animal models and in humans. Reduction of PARP1 activity by pharmacological or molecular approaches attenuates atherosclerotic plaque development and enhances plaque stability as well as promotes the regression of pre-established atherosclerotic plaques. Mechanistically, PARP1 inhibition significantly reduces monocyte differentiation, macrophage recruitment, Sirtuin 1 (SIRT1) inactivation, endothelial dysfunction, neointima formation, foam cell death, and inflammatory responses within plaques, all of which are central to the pathogenesis of atherosclerosis. This article presents an overview of the multiple roles and underlying mechanisms of PARP1 activation (poly(ADP-ribose) accumulation) in atherosclerosis and emphasizes the therapeutic potential of PARP1 inhibition in preventing or reversing atherosclerosis and its cardiovascular clinical sequalae.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | | | | | | |
Collapse
|