1
|
Murga M, Lopez-Pernas G, Soliva R, Fueyo-Marcos E, Amor C, Faustino I, Serna M, Serrano AG, Díaz L, Martínez S, Blanco-Aparicio C, Antón ME, Seashore-Ludlow B, Pastor J, Jafari R, Lafarga M, Llorca O, Orozco M, Fernández-Capetillo O. SETD8 inhibition targets cancer cells with increased rates of ribosome biogenesis. Cell Death Dis 2024; 15:694. [PMID: 39341827 PMCID: PMC11438997 DOI: 10.1038/s41419-024-07106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
SETD8 is a methyltransferase that is overexpressed in several cancers, which monomethylates H4K20 as well as other non-histone targets such as PCNA or p53. We here report novel SETD8 inhibitors, which were discovered while trying to identify chemicals that prevent 53BP1 foci formation, an event mediated by H4K20 methylation. Consistent with previous reports, SETD8 inhibitors induce p53 expression, although they are equally toxic for p53 proficient or deficient cells. Thermal stability proteomics revealed that the compounds had a particular impact on nucleoli, which was confirmed by fluorescent and electron microscopy. Similarly, Setd8 deletion generated nucleolar stress and impaired ribosome biogenesis, supporting that this was an on-target effect of SETD8 inhibitors. Furthermore, a genome-wide CRISPR screen identified an enrichment of nucleolar factors among those modulating the toxicity of SETD8 inhibitors. Accordingly, the toxicity of SETD8 inhibition correlated with MYC or mTOR activity, key regulators of ribosome biogenesis. Together, our study provides a new class of SETD8 inhibitors and a novel biomarker to identify tumors most likely to respond to this therapy.
Collapse
Affiliation(s)
- Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Gema Lopez-Pernas
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Robert Soliva
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 3-2, 08029, Barcelona, Spain
| | - Elena Fueyo-Marcos
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Corina Amor
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ignacio Faustino
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Marina Serna
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alicia G Serrano
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Lucía Díaz
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 3-2, 08029, Barcelona, Spain
| | - Sonia Martínez
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Elena Antón
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Brinton Seashore-Ludlow
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Joaquín Pastor
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rozbeh Jafari
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Miguel Lafarga
- Departament of Anatomy and Cell Biology, Neurodegenerative diseases network (CIBERNED), University of Cantabria-IDIVAL, Santander, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
- Departament de Bioquímica i Biomedicina, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Oscar Fernández-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain.
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden.
| |
Collapse
|
2
|
The effects of Epigallocatechin-3-gallate and Dabrafenib combination on apoptosis and the genes involved in epigenetic events in anaplastic thyroid cancer cells. Med Oncol 2022; 39:98. [DOI: 10.1007/s12032-022-01688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
|
3
|
Herviou L, Ovejero S, Izard F, Karmous-Gadacha O, Gourzones C, Bellanger C, De Smedt E, Ma A, Vincent L, Cartron G, Jin J, De Bruyne E, Grimaud C, Julien E, Moreaux J. Targeting the methyltransferase SETD8 impairs tumor cell survival and overcomes drug resistance independently of p53 status in multiple myeloma. Clin Epigenetics 2021; 13:174. [PMID: 34530900 PMCID: PMC8447659 DOI: 10.1186/s13148-021-01160-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
Background Multiple myeloma (MM) is a malignancy of plasma cells that largely remains incurable. The search for new therapeutic targets is therefore essential. In addition to a wide panel of genetic mutations, epigenetic alterations also appear as important players in the development of this cancer, thereby offering the possibility to reveal novel approaches and targets for effective therapeutic intervention. Results Here, we show that a higher expression of the lysine methyltransferase SETD8, which is responsible for the mono-methylation of histone H4 at lysine 20, is an adverse prognosis factor associated with a poor outcome in two cohorts of newly diagnosed patients. Primary malignant plasma cells are particularly addicted to the activity of this epigenetic enzyme. Indeed, the inhibition of SETD8 by the chemical compound UNC-0379 and the subsequent decrease in histone H4 methylation at lysine 20 are highly toxic in MM cells compared to normal cells from the bone marrow microenvironment. At the molecular level, RNA sequencing and functional studies revealed that SETD8 inhibition induces a mature non-proliferating plasma cell signature and, as observed in other cancers, triggers an activation of the tumor suppressor p53, which together cause an impairment of myeloma cell proliferation and survival. However, a deadly level of replicative stress was also observed in p53-deficient myeloma cells treated with UNC-0379, indicating that the cytotoxicity associated with SETD8 inhibition is not necessarily dependent on p53 activation. Consistent with this, UNC-0379 triggers a p53-independent nucleolar stress characterized by nucleolin delocalization and reduction of nucleolar RNA synthesis. Finally, we showed that SETD8 inhibition is strongly synergistic with melphalan and may overcome resistance to this alkylating agent widely used in MM treatment. Conclusions Altogether, our data indicate that the up-regulation of the epigenetic enzyme SETD8 is associated with a poor outcome and the deregulation of major signaling pathways in MM. Moreover, we provide evidences that myeloma cells are dependent on SETD8 activity and its pharmacological inhibition synergizes with melphalan, which could be beneficial to improve MM treatment in high-risk patients whatever their status for p53. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01160-z.
Collapse
Affiliation(s)
- Laurie Herviou
- IGH, CNRS, Univ Montpellier, Montpellier, France.,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France.,University of Montpellier, 34090, Montpellier, France
| | - Sara Ovejero
- IGH, CNRS, Univ Montpellier, Montpellier, France.,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France.,University of Montpellier, 34090, Montpellier, France
| | - Fanny Izard
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), 34298, Montpellier, France.,University of Montpellier, 34090, Montpellier, France
| | - Ouissem Karmous-Gadacha
- Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Eva De Smedt
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Guillaume Cartron
- University of Montpellier, 34090, Montpellier, France.,Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charlotte Grimaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), 34298, Montpellier, France.,University of Montpellier, 34090, Montpellier, France.,Centre National de La Recherche Scientifique (CNRS), 34293, Montpellier, France
| | - Eric Julien
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), 34298, Montpellier, France. .,University of Montpellier, 34090, Montpellier, France. .,Centre National de La Recherche Scientifique (CNRS), 34293, Montpellier, France.
| | - Jérôme Moreaux
- IGH, CNRS, Univ Montpellier, Montpellier, France. .,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France. .,University of Montpellier, 34090, Montpellier, France. .,Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
4
|
Bryzgalov LO, Korbolina EE, Brusentsov II, Leberfarb EY, Bondar NP, Merkulova TI. Novel functional variants at the GWAS-implicated loci might confer risk to major depressive disorder, bipolar affective disorder and schizophrenia. BMC Neurosci 2018; 19:22. [PMID: 29745862 PMCID: PMC5998904 DOI: 10.1186/s12868-018-0414-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A challenge of understanding the mechanisms underlying cognition including neurodevelopmental and neuropsychiatric disorders is mainly given by the potential severity of cognitive disorders for the quality of life and their prevalence. However, the field has been focused predominantly on protein coding variation until recently. Given the importance of tightly controlled gene expression for normal brain function, the goal of the study was to assess the functional variation including non-coding variation in human genome that is likely to play an important role in cognitive functions. To this end, we organized and utilized available genome-wide datasets from genomic, transcriptomic and association studies into a comprehensive data corpus. We focused on genomic regions that are enriched in regulatory activity-overlapping transcriptional factor binding regions and repurpose our data collection especially for identification of the regulatory SNPs (rSNPs) that showed associations both with allele-specific binding and allele-specific expression. We matched these rSNPs to the nearby and distant targeted genes and then selected the variants that could implicate the etiology of cognitive disorders according to Genome-Wide Association Studies (GWAS). Next, we use DeSeq 2.0 package to test the differences in the expression of the certain targeted genes between the controls and the patients that were diagnosed bipolar affective disorder and schizophrenia. Finally, we assess the potential biological role for identified drivers of cognition using DAVID and GeneMANIA. RESULTS As a result, we selected fourteen regulatory SNPs locating within the loci, implicated from GWAS for cognitive disorders with six of the variants unreported previously. Grouping of the targeted genes according to biological functions revealed the involvement of processes such as 'posttranscriptional regulation of gene expression', 'neuron differentiation', 'neuron projection development', 'regulation of cell cycle process' and 'protein catabolic processes'. We identified four rSNP-targeted genes that showed differential expression between patient and control groups depending on brain region: NRAS-in schizophrenia cohort, CDC25B, DDX21 and NUCKS1-in bipolar disorder cohort. CONCLUSIONS Overall, our findings are likely to provide the keys for unraveling the mechanisms that underlie cognitive functions including major depressive disorder, bipolar disorder and schizophrenia etiopathogenesis.
Collapse
Affiliation(s)
- Leonid O. Bryzgalov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
| | - Elena E. Korbolina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
- The Novosibirsk State University, 1 Pirogova st., Novosibirsk, Russian Federation 630090
| | - Ilja I. Brusentsov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
| | - Elena Y. Leberfarb
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
| | - Natalia P. Bondar
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
- The Novosibirsk State University, 1 Pirogova st., Novosibirsk, Russian Federation 630090
| | - Tatiana I. Merkulova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
- The Novosibirsk State University, 1 Pirogova st., Novosibirsk, Russian Federation 630090
| |
Collapse
|
5
|
Taylor MS, Altukhov I, Molloy KR, Mita P, Jiang H, Adney EM, Wudzinska A, Badri S, Ischenko D, Eng G, Burns KH, Fenyö D, Chait BT, Alexeev D, Rout MP, Boeke JD, LaCava J. Dissection of affinity captured LINE-1 macromolecular complexes. eLife 2018; 7:30094. [PMID: 29309035 PMCID: PMC5821459 DOI: 10.7554/elife.30094] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Long Interspersed Nuclear Element-1 (LINE-1, L1) is a mobile genetic element active in human genomes. L1-encoded ORF1 and ORF2 proteins bind L1 RNAs, forming ribonucleoproteins (RNPs). These RNPs interact with diverse host proteins, some repressive and others required for the L1 lifecycle. Using differential affinity purifications, quantitative mass spectrometry, and next generation RNA sequencing, we have characterized the proteins and nucleic acids associated with distinctive, enzymatically active L1 macromolecular complexes. Among them, we describe a cytoplasmic intermediate that we hypothesize to be the canonical ORF1p/ORF2p/L1-RNA-containing RNP, and we describe a nuclear population containing ORF2p, but lacking ORF1p, which likely contains host factors participating in target-primed reverse transcription.
Collapse
Affiliation(s)
- Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, United States
| | - Ilya Altukhov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
| | - Paolo Mita
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, NYU Langone Health, New York, United States
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, United States
| | - Emily M Adney
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, NYU Langone Health, New York, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Aleksandra Wudzinska
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sana Badri
- Department of Pathology, NYU Langone Health, New York, United States
| | - Dmitry Ischenko
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - George Eng
- Department of Pathology, Massachusetts General Hospital, Boston, United States
| | - Kathleen H Burns
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, United States.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, NYU Langone Health, New York, United States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
| | | | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, United States
| | - Jef D Boeke
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, NYU Langone Health, New York, United States
| | - John LaCava
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, NYU Langone Health, New York, United States.,Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, United States
| |
Collapse
|
6
|
Shih CT, Chang YF, Chen YT, Ma CP, Chen HW, Yang CC, Lu JC, Tsai YS, Chen HC, Tan BCM. The PPARγ-SETD8 axis constitutes an epigenetic, p53-independent checkpoint on p21-mediated cellular senescence. Aging Cell 2017; 16:797-813. [PMID: 28514051 PMCID: PMC5506440 DOI: 10.1111/acel.12607] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2017] [Indexed: 01/09/2023] Open
Abstract
Cellular senescence is a permanent proliferative arrest triggered by genome instability or aberrant growth stresses, acting as a protective or even tumor‐suppressive mechanism. While several key aspects of gene regulation have been known to program this cessation of cell growth, the involvement of the epigenetic regulation has just emerged but remains largely unresolved. Using a systems approach that is based on targeted gene profiling, we uncovered known and novel chromatin modifiers with putative link to the senescent state of the cells. Among these, we identified SETD8 as a new target as well as a key regulator of the cellular senescence signaling. Knockdown of SETD8 triggered senescence induction in proliferative culture, irrespectively of the p53 status of the cells; ectopic expression of this epigenetic writer alleviated the extent doxorubicin‐induced cellular senescence. This repressive effect of SETD8 in senescence was mediated by directly maintaining the silencing mark H4K20me1 at the locus of the senescence switch gene p21. Further in support of this regulatory link, depletion of p21 reversed this SETD8‐mediated cellular senescence. Additionally, we found that PPARγ acts upstream and regulates SETD8 expression in proliferating cells. Downregulation of PPARγ coincided with the senescence induction, while its activation inhibited the progression of this process. Viewed together, our findings delineated a new epigenetic pathway through which the PPARγ‐SETD8 axis directly silences p21 expression and consequently impinges on its senescence‐inducing function. This implies that SETD8 may be part of a cell proliferation checkpoint mechanism and has important implications in antitumor therapeutics.
Collapse
Affiliation(s)
- Chieh-Tien Shih
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
| | - Yi-Feng Chang
- Molecular Medicine Research Center; Chang Gung University; Tao-Yuan Taiwan
| | - Yi-Tung Chen
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
| | - Chung-Pei Ma
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
| | - Hui-Wen Chen
- Department of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
| | - Chang-Ching Yang
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
- Department of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
| | - Juu-Chin Lu
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
- Department of Physiology and Pharmacology; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
- Division of Endocrinology and Metabolism; Department of Internal Medicine; Chang Gung Memorial Hospital; Linkou, Tao-Yuan Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine; National Cheng Kung University; Tainan Taiwan
| | - Hua-Chien Chen
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
- Molecular Medicine Research Center; Chang Gung University; Tao-Yuan Taiwan
- Department of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
| | - Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
- Molecular Medicine Research Center; Chang Gung University; Tao-Yuan Taiwan
- Department of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
- Department of Neurosurgery; Lin-Kou Medical Center; Chang Gung Memorial Hospital; Linkou, Tao-Yuan Taiwan
| |
Collapse
|
7
|
Li J, Zhu S, Ke XX, Cui H. Role of several histone lysine methyltransferases in tumor development. Biomed Rep 2016; 4:293-299. [PMID: 26998265 PMCID: PMC4774316 DOI: 10.3892/br.2016.574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/31/2015] [Indexed: 12/17/2022] Open
Abstract
The field of cancer epigenetics has been evolving rapidly in recent decades. Epigenetic mechanisms include DNA methylation, histone modifications and microRNAs. Histone modifications are important markers of function and chromatin state. Aberrant histone methylation frequently occurs in tumor development and progression. Multiple studies have identified that histone lysine methyltransferases regulate gene transcription through the methylation of histone, which affects cell proliferation and differentiation, cell migration and invasion, and other biological characteristics. Histones have variant lysine sites for different levels of methylation, catalyzed by different lysine methyltransferases, which have numerous effects on human cancers. The present review focused on the most recent advances, described the key function sites of histone lysine methyltransferases, integrated significant quantities of data to introduce several compelling histone lysine methyltransferases in various types of human cancers, summarized their role in tumor development and discussed their potential mechanisms of action.
Collapse
Affiliation(s)
- Jifu Li
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Shunqin Zhu
- School of Life Science, Southwest University, Chongqing 400716, P.R. China
| | - Xiao-Xue Ke
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hongjuan Cui
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
8
|
Hashemi M, Sheybani-Nasab M, Naderi M, Roodbari F, Taheri M. Association of functional polymorphism at the miR-502-binding site in the 3' untranslated region of the SETD8 gene with risk of childhood acute lymphoblastic leukemia, a preliminary report. Tumour Biol 2014; 35:10375-10379. [PMID: 25048968 DOI: 10.1007/s13277-014-2359-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/14/2014] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, bind to the 3' untranslated regions (UTRs) of mRNAs, where they interfere with translation of genes and are implicated in the pathogenesis of diverse diseases. In the present study, we evaluate the impact of rs16917496 polymorphism within the miR-502 miRNA seed region at the 3'UTR of SEDT8 on childhood acute lymphoblastic leukemia (ALL). This case-control study was done on 75 ALL and 115 healthy children. Genotyping of rs16917496 C/T polymorphism was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results showed that CT as well as CT + TT decreased the risk of ALL in comparison with CC genotype (odds ratio (OR) = 0.29, 95 % confidence intervals (95 % CI) = 0.11-0.78, P = 0.014 and OR = 0.31, 95 % CI = 0.12-0.82, P = 0.016, respectively). Our results demonstrated that SETD8 rs16917496 C/T polymorphism was associated with decreased risk of developing pediatric ALL in Zahedan, southeast Iran. Larger studies with different ethnicities are desired to validate our findings.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran,
| | | | | | | | | |
Collapse
|
9
|
Yang S, Guo H, Wei B, Zhu S, Cai Y, Jiang P, Tang J. Association of miR-502-binding site single nucleotide polymorphism in the 3'-untranslated region of SET8 and TP53 codon 72 polymorphism with non-small cell lung cancer in Chinese population. Acta Biochim Biophys Sin (Shanghai) 2014; 46:149-54. [PMID: 24374662 DOI: 10.1093/abbs/gmt138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The objective of this study was to identify whether the miR-502-binding site single nucleotide polymorphism (SNP) in the 3'-untranslated region (3'-UTR) of set domain-containing protein 8 (SET8) and the tumor protein p53 (TP53) codon 72 polymorphism were associated with the risk for non-small cell lung cancer (NSCLC), either independently or jointly, among Chinese people from southern Han. The genotypes of SET8 and TP53 codon 72 polymorphisms of peripheral blood DNA were detected using polymerase chain reaction-restriction fragment length polymorphism and direct DNA sequencing in a case-control study on 164 NSCLC cases and 199 controls. The SET8 TT (odds ratio, OR = 2.173, 95% confidence interval, CI = 1.0454.517) or TP53 GG (OR = 2.579, 95% CI = 1.366-4.870) genotype was associated with an increased risk of NSCLC by comparing with the SET8 CC or TP53 CC genotype, respectively. Similar results were obtained in SET8 recessive model (OR = 2.074, 95% CI = 1.019-4.221, P < 0.05), and the dominant and recessive model of TP53 codon 72 were performed, respectively (OR = 1.809, 95% CI = 1.159-2.825, P < 0.05; OR = 1.933, 95% CI = 1.096-3.409, P < 0.05). In addition, interaction between the SET8 and TP53 polymorphisms increased the risk of NSCLC in a multiply manner, with the OR being 3.032 (95%CI = 1.580-5.816) for subjects carrying both SET8 TT and TP53 GG genotypes. Therefore, the miR-502-binding site SNP in the 3'-UTR of SET8 and the TP53 codon 72 polymorphism may be markers of genetic susceptibility to NSCLC in Chinese population, and there is a possible gene-gene interaction in the incidence of NSCLC.
Collapse
Affiliation(s)
- Shaodi Yang
- Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou 412007, China
| | | | | | | | | | | | | |
Collapse
|