1
|
Wu J, Wang X, Lakkaraju A, Sternke-Hoffmann R, Qureshi BM, Aguzzi A, Luo J. Channel Activities of the Full-Length Prion and Truncated Proteins. ACS Chem Neurosci 2024; 15:98-107. [PMID: 38096481 DOI: 10.1021/acschemneuro.3c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by the conversion of the cellular prion protein (PrPC) into a misfolded prion form, which is believed to disrupt the cellular membranes. However, the exact mechanisms underlying prion toxicity, including the formation of membrane pores, are not fully understood. The prion protein consists of two domains: a globular domain (GD) and a flexible N-terminus (FT) domain. Although a proximal polybasic amino acid (FT(23-31) sequence of FT is a prerequisite for cellular membrane permeabilization, other functional domain regions may modulate its effects. Through single-channel electrical recordings and cryo-electron microscopy (cryo-EM), we discovered that the FT(23-50) fragment forms pore-shaped oligomers and plays a dominant role in membrane permeabilization within the full-length mouse prion protein (mPrP(23-230)). In contrast, the FT(51-110) domain or the C-terminal domain downregulate the channel activity of FT(23-50) and mPrP(23-230). The addition of prion mimetic antibody, POM1 significantly amplifies mPrP(23-230) membrane permeabilization, whereas POM1_Y104A, a mutant that binds to PrP but cannot elicit toxicity, has a negligible effect on membrane permeabilization. Additionally, the anti-N-terminal antibody POM2 or Cu2+ binds to the FT domain, subsequently enhancing the FT(23-110) channel activity. Importantly, our setup provides a novel approach without an external fused protein to examine the channel activity of truncated PrP in the lipid membranes. We therefore propose that the primary N-terminal residues are essential for membrane permeabilization, while other functional segments of PrP play a vital role in modulating the pathological effects of PrP-mediated neurotoxicity.
Collapse
Affiliation(s)
- Jinming Wu
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Xue Wang
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Asvin Lakkaraju
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | | | - Bilal M Qureshi
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zurich, Zurich 8093, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
2
|
Gautam D, Kailashiya J, Tiwari A, Chaurasia RN, Annarapu GK, Guchhait P, Dash D. Fibrinogen Mitigates Prion-Mediated Platelet Activation and Neuronal Cell Toxicity. Front Cell Dev Biol 2022; 10:834016. [PMID: 35386203 PMCID: PMC8977893 DOI: 10.3389/fcell.2022.834016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Prion peptide (PrP) misfolds to infectious scrapie isoform, the β pleat-rich insoluble fibrils responsible for neurodegeneration and fatal conformational diseases in humans. The amino acid sequence 106–126 from prion proteins, PrP(106–126), is highly amyloidogenic and implicated in prion-induced pathologies. Here, we report a novel interaction between PrP(106–126) and the thrombogenic plasma protein fibrinogen that can lead to mitigation of prion-mediated pro-thrombotic responses in human platelets as well as significant decline in neuronal toxicity. Thus, prior exposure to fibrinogen-restrained PrP-induced rise in cytosolic calcium, calpain activation, and shedding of extracellular vesicles in platelets while it, too, averted cytotoxicity of neuronal cells triggered by prion peptide. Interestingly, PrP was found to accelerate fibrin-rich clot formation, which was resistant to plasmin-mediated fibrinolysis, consistent with enhanced thrombus stability provoked by PrP. We propose that PrP-fibrinogen interaction can be clinically exploited further for prevention and management of infectious prion related disorders. Small molecules or peptides mimicking PrP-binding sites on fibrinogen can potentially mitigate PrP-induced cellular toxicity while also preventing the negative impact of PrP on fibrin clot formation and lysis.
Collapse
Affiliation(s)
- Deepa Gautam
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jyotsna Kailashiya
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Arundhati Tiwari
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gowtham K. Annarapu
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- *Correspondence: Debabrata Dash,
| |
Collapse
|
3
|
Abstract
Protein aggregation and amyloid formation are pathogenic events underlying the development of an increasingly large number of human diseases named “proteinopathies”. Abnormal accumulation in affected tissues of amyloid β (Aβ) peptide, islet amyloid polypeptide (IAPP), and the prion protein, to mention a few, are involved in the occurrence of Alzheimer’s (AD), type 2 diabetes mellitus (T2DM) and prion diseases, respectively. Many reports suggest that the toxic properties of amyloid aggregates are correlated with their ability to damage cell membranes. However, the molecular mechanisms causing toxic amyloid/membrane interactions are still far to be completely elucidated. This review aims at describing the mutual relationships linking abnormal protein conformational transition and self-assembly into amyloid aggregates with membrane damage. A cross-correlated analysis of all these closely intertwined factors is thought to provide valuable insights for a comprehensive molecular description of amyloid diseases and, in turn, the design of effective therapies.
Collapse
|
4
|
Tomasini C, Zanna N. Oxazolidinone-containing pseudopeptides: Supramolecular materials, fibers, crystals, and gels. Biopolymers 2017; 108. [DOI: 10.1002/bip.22898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/30/2016] [Accepted: 06/25/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Claudia Tomasini
- Dipartimento Di Chimica Ciamician; Università Di Bologna; via Selmi, 2 Bologna 40137 Italy
| | - Nicola Zanna
- Dipartimento Di Chimica Ciamician; Università Di Bologna; via Selmi, 2 Bologna 40137 Italy
| |
Collapse
|
5
|
Zhu T, Hayat Khan S, Zhao D, Yang L. Regulation of proteasomes in prion disease. Acta Biochim Biophys Sin (Shanghai) 2014; 46:531-9. [PMID: 24829398 DOI: 10.1093/abbs/gmu031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The hallmark of prion disease is the accumulation of misfolded protein PrP(Sc), which is toxic to neuronal cells. The proteasome system is responsible for the rapid, precise, and timely degradation of proteins and plays an important role in cellular protein quality control. Increasing evidence indicates impaired activity of proteasomes in prion diseases. Accumulated PrP(Sc) can directly or indirectly affect proteasome activity. Misfolded protein may influence the assembly and activity of 19S regulatory particle, or post-translational modification of 20S proteasome, which may adversely affect the protein degradation activity of proteasomes. In this review, we summarized the recent findings concerning the possible regulation of proteasomes in prion and other neurodegenerative diseases. The proteasome system may enhance its degradation activity by changing its structure, and this activity can also be increased by related chaperones when neuronal cells are subject to stress. When the proteasome system is inhibited, degradation of protein aggregates via autophagy may increase as a compensatory system. It is possible that a balance exists between the proteasome and autophagy in vivo; when one is impaired, the activity of the other may increase to maintain homeostasis. However, more studies are needed to elucidate the relationship between the proteasome system and autophagy.
Collapse
Affiliation(s)
- Ting Zhu
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Sher Hayat Khan
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lifeng Yang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Wang X, Cui M, Zhao C, He L, Zhu D, Wang B, Du W. Regulation of aggregation behavior and neurotoxicity of prion neuropeptides by platinum complexes. Inorg Chem 2014; 53:5044-54. [PMID: 24787240 DOI: 10.1021/ic500092t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prion diseases belong to a group of infectious, fatal neurodegenerative disorders. The conformational conversion of a cellular prion protein (PrP(C)) into an abnormal misfolded isoform (PrP(Sc)) is the key event in prion disease pathology. PrP106-126 resembles PrP(Sc) in some physicochemical and biological characteristics, such as apoptosis induction in neurons, fibrillar formation, and mediation of the conversion of native cellular PrP(C) to PrP(Sc). Numerous studies have been conducted to explore the inhibiting methods on the aggregation and neurotoxicity of prion neuropeptide PrP106-126. We showed that PrP106-126 aggregation, as assessed by fluorescence assay and atomic force microscopy, is inhibited by platinum complexes cisplatin, carboplatin, and Pt(bpy)Cl2. ESI-MS and NMR assessments of PrP106-126 and its mutant peptides demonstrate that platinum complexes bind to the peptides in coordination and nonbonded interactions, which rely on the ligand properties and the peptide sequence. In peptides, methionine residue is preferred as a potent binding site over histidine residue for the studied platinum complexes, implying a typical thiophile characteristic of platinum. The neurotoxicity induced by PrP106-126 is better inhibited by Pt(bpy)Cl2 and cisplatin. Furthermore, the ligand configuration contributes to both the binding affinity and the inhibition of peptide aggregation. The pursuit of novel platinum candidates that selectively target prion neuropeptide is noteworthy for medicinal inorganic chemistry and chemical biology.
Collapse
Affiliation(s)
- Xuesong Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|