1
|
Zaib S, Rana N, Khan I. Histone modifications and their role in epigenetics of cancer. Curr Med Chem 2021; 29:2399-2411. [PMID: 34749606 DOI: 10.2174/0929867328666211108105214] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic regulations play a crucial role in the expression of various genes that are important in the normal cell function. Any alteration in these epigenetic mechanisms can lead to the modification of histone and DNA resulting in the silencing or enhanced expression of some genes causing various diseases. Acetylation, methylation, ribosylation or phosphorylation of histone proteins modifies its interaction with the DNA, consequently changing the ratio of heterochromatin and euchromatin. Terminal lysine residues of histone proteins serve as potential targets of such epigenetic modifications. The current review focuses on the histone modifications, their contributing factors, role of these modifications on metabolism leading to cancer and methylation of histone in cancer affects the DNA repair mechanisms.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590. Pakistan
| | - Nehal Rana
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590. Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN. United Kingdom
| |
Collapse
|
2
|
Zhang Z, Chen B, Zhu Y, Zhang T, Yuan Y, Zhang X, Xu Y. The Jumonji Domain-Containing Histone Demethylase Homolog 1D/lysine Demethylase 7A (JHDM1D/KDM7A) Is an Epigenetic Activator of RHOJ Transcription in Breast Cancer Cells. Front Cell Dev Biol 2021; 9:664375. [PMID: 34249916 PMCID: PMC8262595 DOI: 10.3389/fcell.2021.664375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
The small GTPase RHOJ is a key regulator of breast cancer metastasis by promoting cell migration and invasion. The prometastatic stimulus TGF-β activates RHOJ transcription via megakaryocytic leukemia 1 (MKL1). The underlying epigenetic mechanism is not clear. Here, we report that MKL1 deficiency led to disrupted assembly of the RNA polymerase II preinitiation complex on the RHOJ promoter in breast cancer cells. This could be partially explained by histone H3K9/H3K27 methylation status. Further analysis confirmed that the H3K9/H3K27 dual demethylase JHDM1D/KDM7A was essential for TGF-β-induced RHOJ transcription in breast cancer cells. MKL1 interacted with and recruited KDM7A to the RHOJ promoter to cooperatively activate RHOJ transcription. KDM7A knockdown attenuated migration and invasion of breast cancer cells in vitro and mitigated the growth and metastasis of breast cancer cells in nude mice. KDM7A expression level, either singularly or in combination with that of RHOJ, could be used to predict prognosis in breast cancer patients. Of interest, KDM7A appeared to be a direct transcriptional target of TGF-β signaling. A SMAD2/SMAD4 complex bound to the KDM7A promoter and mediated TGF-β-induced KDM7A transcription. In conclusion, our data unveil a novel epigenetic mechanism whereby TGF-β regulates the transcription of the prometastatic small GTPase RHOJ. Screening for small-molecule inhibitors of KDM7A may yield effective therapeutic solutions to treat malignant breast cancers.
Collapse
Affiliation(s)
- Ziyu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Baoyu Chen
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tianyi Zhang
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yibiao Yuan
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoling Zhang
- School of Medicine, Nanchang University, Nanchang, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Epigenetic activation of the small GTPase TCL contributes to colorectal cancer cell migration and invasion. Oncogenesis 2020; 9:86. [PMID: 32999272 PMCID: PMC7528090 DOI: 10.1038/s41389-020-00269-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 01/25/2023] Open
Abstract
TC10-like (TCL) is a small GTPase that has been implicated in carcinogenesis. Elevated TCL expression has been observed in many different types of cancers although the underlying epigenetic mechanism is poorly understood. Here we report that TCL up-regulation was associated with high malignancy in both human colorectal cancer biopsy specimens and in cultured colorectal cancer cells. Hypoxia, a pro-metastatic stimulus, up-regulated TCL expression in HT-29 cells. Further studies revealed that myocardin-related transcription factor A (MRTF-A) promoted migration and invasion of HT-29 cells in a TCL-dependent manner. MRTF-A directly bound to the proximal TCL promoter in response to hypoxia to activate TCL transcription. Chromatin immunoprecipitation (ChIP) assay showed that hypoxia stimulation specifically enhanced acetylation of histone H4K16 surrounding the TCL promoter, which was abolished by MRTF-A depletion or inhibition. Mechanistically, MRTF-A interacted with and recruited the H4K16 acetyltransferase hMOF to the TCL promoter to cooperatively regulate TCL transcription. hMOF depletion or inhibition attenuated hypoxia-induced TCL expression and migration/invasion of HT-29 cells. In conclusion, our data identify a novel MRTF-A-hMOF-TCL axis that contributes to colorectal cancer metastasis.
Collapse
|
6
|
Li N, Yuan Q, Cao XL, Zhang Y, Min ZL, Xu SQ, Yu ZJ, Cheng J, Zhang C, Hu XM. Opposite effects of HDAC5 and p300 on MRTF-A-related neuronal apoptosis during ischemia/reperfusion injury in rats. Cell Death Dis 2017; 8:e2624. [PMID: 28230854 PMCID: PMC5386465 DOI: 10.1038/cddis.2017.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/23/2016] [Accepted: 12/28/2016] [Indexed: 01/22/2023]
Abstract
Our recent study has revealed that the myocardin-related transcription factor-A (MRTF-A) is involved in the apoptosis of cortical neurons induced by ischemia/reperfusion (I/R). Histone deacetylase 5 (HDAC5) and histone acetyltransferase p300 (P300) are two well-known regulators for transcription factors; however, their roles in MRTF-A-related effect on neuronal injuries during I/R are still unclear. In this study, in a model rat cerebral I/R injury via middle cerebral artery occlusion and reperfusion, we found that the expression and activity of HDAC5 was upregulated, whereas p300 and MRTF-A were downregulated both in expression and activity during I/R. Their expression changes and the interaction of the MRTF-A with HDAC5 or p300 were further verified by double immunofluorescence and co-immunoprecipitation. In cultured neuronal apoptosis model induced by H2O2, MRTF-A exhibited an anti-apoptotic effect by enhancing the transcription of Bcl-2 and Mcl-1 via CArG box binding. MRTF-A-induced anti-apoptotic effect was effectively inhibited by HDAC5, but was significantly enhanced by p300. The results suggest that both HDAC5 and p300 are involved in MRTF-A-mediated effect on neuronal apoptosis during ischemia/reperfusion injury, but with opposite effects.
Collapse
Affiliation(s)
- Na Li
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.,Drug Research Base of Cardiovascular and Cerebral Vascular, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Qiong Yuan
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.,Drug Research Base of Cardiovascular and Cerebral Vascular, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Xiao-Lu Cao
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.,Drug Research Base of Cardiovascular and Cerebral Vascular, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Ying Zhang
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.,Drug Research Base of Cardiovascular and Cerebral Vascular, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Zhen-Li Min
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.,Drug Research Base of Cardiovascular and Cerebral Vascular, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Shi-Qiang Xu
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.,Drug Research Base of Cardiovascular and Cerebral Vascular, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Zhi-Jun Yu
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.,Drug Research Base of Cardiovascular and Cerebral Vascular, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Jing Cheng
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.,Drug Research Base of Cardiovascular and Cerebral Vascular, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Chunxiang Zhang
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.,Drug Research Base of Cardiovascular and Cerebral Vascular, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.,Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xia-Min Hu
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.,Drug Research Base of Cardiovascular and Cerebral Vascular, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| |
Collapse
|