1
|
Zhang M, Zhang H, Yao H, Guo C, Lin D. Biophysical characterization of oligomerization and fibrillization of the G131V pathogenic mutant of human prion protein. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1223-1232. [PMID: 31735962 DOI: 10.1093/abbs/gmz124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 11/14/2022] Open
Abstract
The pathogenesis of fatal neurodegenerative prion diseases is closely associated with the conversion of α-helix-rich cellular prion protein into β-sheet-rich scrapie form. Pathogenic point mutations of prion proteins usually promote the conformational conversion and trigger inherited prion diseases. The G131V mutation of human prion protein (HuPrP) was identified to be involved in Gerstmann-Sträussler-Scheinker syndrome. Few studies have been carried out to address the pathogenesis of the G131V mutant. Here, we addressed the effects of the G131V mutation on oligomerization and fibrillization of the full-length HuPrP(23-231) and truncated HuPrP(91-231) proteins. The G131V mutation promotes the oligomerization but alleviates the fibrillization of HuPrP, implying that the oligomerization might play a crucial role in the pathogenic mechanisms of the G131V mutant. Moreover, the flexible N-terminal fragment in either the wild-type or the G131V mutant HuPrP increases the oligomerization tendencies but decreases the fibrillization tendencies. Furthermore, this mutation significantly alters the tertiary structure of human PrPC and might distinctly change the conformational conversion tendency. Interestingly, both guanidine hydrochloride denaturation and thermal denaturation experiments showed that the G131V mutation does not significantly change the thermodynamic stabilities of the HuPrP proteins. This work may be of benefit to a mechanistic understanding of the conformational conversion of prion proteins and also provide clues for the prevention and treatment of prion diseases.
Collapse
Affiliation(s)
- Meilan Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haoran Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongwei Yao
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Magrì A, Tabbì G, Cucci LM, Satriano C, Pietropaolo A, Malgieri G, Isernia C, La Mendola D. The curious case of opossum prion: a physicochemical study on copper(ii) binding to the bis-decarepeat fragment from the protein N-terminal domain. Dalton Trans 2019; 48:17533-17543. [PMID: 31748763 DOI: 10.1039/c9dt02510c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The opossum is a peculiar model of immunity to prion diseases. Here we scrutinised the bis-decarepeat peptide sequence of the opossum prion (Op_bis-deca) protein by a multitechnique approach, with a combined experimental (potentiometry, UV-visible, circular dichroism, NMR and EPR spectroscopy, quartz crystal microbalance with dissipation monitoring and confocal microscopy) and simulation (DFT calculations) approach. Results showed that the macrochelate structures formed upon the binding to Cu(ii) by the analogous bis-octarepeat peptide sequence of human prion (Hu_bis-octa) are not found in the case of Op_bis-deca. At physiological pH and equimolar amount of copper ions, the [CuLH-2] is the major species formed by Op_bis-deca. In this species one imidazole and two amide nitrogen atoms are involved in metal coordination and its stability constant value is lower than that of the analogous species formed by Hu_bis-octa, due to the presence of an extra proline residue. Moreover, the study on the interaction of the peptides or the peptide/Cu(ii) complexes with the model cell membranes made of supported lipid bilayers disclosed different levels of interaction, monitored by the viscoelastic changes of the membranes, which exhibited a similar viscoelastic response at the interface of the two complexes, while in the absence of Cu(ii), the Hu_bis-octa/SLB interface was more viscoelastic than the Op_bis-deca one.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Crystallography, National Research Council (CNR), S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Structural Consequences of Copper Binding to the Prion Protein. Cells 2019; 8:cells8080770. [PMID: 31349611 PMCID: PMC6721516 DOI: 10.3390/cells8080770] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Prion, or PrPSc, is the pathological isoform of the cellular prion protein (PrPC) and it is the etiological agent of transmissible spongiform encephalopathies (TSE) affecting humans and animal species. The most relevant function of PrPC is its ability to bind copper ions through its flexible N-terminal moiety. This review includes an overview of the structure and function of PrPC with a focus on its ability to bind copper ions. The state-of-the-art of the role of copper in both PrPC physiology and in prion pathogenesis is also discussed. Finally, we describe the structural consequences of copper binding to the PrPC structure.
Collapse
|
4
|
Yu Y, Yu Z, Zheng Z, Wang H, Wu X, Guo C, Lin D. Distinct effects of mutations on biophysical properties of human prion protein monomers and oligomers. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1016-1025. [PMID: 27649893 DOI: 10.1093/abbs/gmw094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 02/05/2023] Open
Abstract
Prion diseases are a group of fatal neurodegenerative illnesses, resulting from the conformational conversion of the cellular prion protein (PrPC) into a misfolded form (PrPSc). The formation of neurotoxic soluble prion protein oligomer (PrPO) is regarded as a key step in the development of prion diseases. About 10%-15% of human prion diseases are caused by mutations in the prion protein gene; however, the underlying molecular mechanisms remain unclear. In the present work, we compared the biophysical properties of wild-type (WT) human prion protein 91-231 (WT HuPrP91-231) and its disease-associated variants (P105L, D178N, V203I, and Q212P) using several biophysical techniques. In comparison with WT HuPrPC, the Q212P and D178N variants possessed greatly increased conversion propensities of PrPC into PrPO, while the V203I variant had dramatically decreased conversion propensity. The P105L variant displayed a similar conversion propensity to WT HuPrPC Guanidine hydrochloride-induced unfolding experiments ranked the thermodynamic stabilities of these proteins as Q212P < D178N < WT ≈ P105L < V203I. It was thus suggested that the conversion propensities of the prion proteins are closely associated with their thermodynamic stabilities. Furthermore, structural comparison illustrated that Q212P, D178N, and V203I variants underwent larger structural changes compared with WT HuPrPC, while the P105L variant adopted a similar structure to the WT HuPrPC The mutation-induced structural perturbations might change the thermodynamic stabilities of the HuPrPC variants, and correspondingly alter the conversion propensities for these prion proteins. Our results extend the mechanistic understanding of prion pathogenesis, and lay the basis for the prevention and treatment of prion diseases.
Collapse
Affiliation(s)
- Yuanhui Yu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ziyao Yu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Zheng
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huilin Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xueji Wu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|