1
|
Zhang J, Xu Q, Sun G. Lipocalin-2 promotes NSCLC progression by activating the JAK2/STAT3 signaling pathway. J Transl Med 2025; 23:419. [PMID: 40211270 PMCID: PMC11987316 DOI: 10.1186/s12967-025-06418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/25/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. Lipocalin-2 (LCN2), a pleiotropic protein implicated in tumorigenesis and cancer progression, has been associated with multiple malignancies. However, its precise role in NSCLC and the underlying molecular mechanisms remain incompletely understood. This study aimed to elucidate the function of LCN2 in NSCLC, with a particular focus on its involvement in the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. METHODS LCN2 expression in NSCLC tissues was comprehensively analyzed using bioinformatics tools, including the Universal Analysis of Cancer (UALCAN), The Cancer Genome Atlas (TCGA), UCSC-XENA, and Gene Expression Omnibus (GEO) databases. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were employed to assess LCN2 expression levels in NSCLC cell lines. The functional impact of LCN2 on NSCLC cells, including proliferation, apoptosis, and metastasis, were assessed through a series of in vitro assays, such as Cell Counting Kit-8 (CCK-8), EdU, wound healing, and transwell migration and invasion assays. An in vivo xenograft model was established to investigate the effects of LCN2 on tumor growth and metastasis. Additionally, the involvement of the JAK2/STAT3 signaling pathway was examined using western blotting and pharmacological inhibition with AG490. RESULTS LCN2 was significantly upregulated in NSCLC tissues and cell lines, and its elevated expression correlated with poor prognosis. Functional analyses demonstrated that LCN2 knockdown suppressed NSCLC cell proliferation, migration, and invasion while promoting apoptosis. Mechanistically, LCN2 was found to activate the JAK2/STAT3 pathway by interacting with SOCS3, and pharmacological blockade of this pathway effectively abrogated the oncogenic effects of LCN2 overexpression. CONCLUSIONS This study identifies LCN2 as a potential oncogene in NSCLC, driving tumor progression through activation of the JAK2/STAT3 signaling pathway. These findings suggest that targeting LCN2 or its downstream signaling components may represent a promising therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Province, 230022, Hefei, China
| | - Qin Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Province, 230022, Hefei, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Province, 230022, Hefei, China.
| |
Collapse
|
2
|
Li A, Zhang K, Zhou J, Li M, Fan M, Gao H, Ma R, Gao L, Chen M. Bioinformatics and experimental approach identify lipocalin 2 as a diagnostic and prognostic indicator for lung adenocarcinoma. Int J Biol Macromol 2024; 272:132797. [PMID: 38848833 DOI: 10.1016/j.ijbiomac.2024.132797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND lipocalin 2 (LCN2) is a secreted glycoprotein that plays key roles in tumorigenesis and progression. Interestingly, LCN2 appears to have a contradictory function in developing lung adenocarcinoma (LUAD). Thus, we intend to explore the role of LCN2 in LUAD through bioinformatics and experimental validation. METHODS LCN2 expression of LUAD was investigated in the TCGA, TIMER and HPA databases. The relationship between LCN2 and prognosis was investigated by KM plotter, TCGA and GEO databases. GO, KEGG and protein-protein interactions network analysis were conducted to investigate the potential mechanism of LCN2. The relevance of LCN2 to cancer-immune infiltrates was investigated in the TCGA and TIMER databases. Quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assay were performed to identify the expression level of LCN2 in cells and serum samples. The CCK-8, wound healing and transwell assay were used to confirm the effect of LCN2 on cell proliferation, migration and invasion in LUAD. The receiver operating characteristic curve was utilized to assess the diagnostic efficiency of LCN2 further. RESULTS LCN2 expression was significantly upregulated in LUAD (P < 0.05), and was correlated with the clinical stage, tumor size, lymph node metastasis and distant metastasis (P < 0.05). There was a high correlation between high LCN2 and worse prognosis in LUAD. Functional network analysis suggested that LCN2 was associated with multiple signal pathways in cancers, such as JAK-STAT, TNF, NF-κB, HIF-1 and PI3K-Akt signal pathways. In addition, the knockdown of LCN2 significantly inhibited the ability of cell proliferation, migration and invasion. Immune infiltration analysis indicated that LCN2 is associated with multiple immune cell infiltration. Notably, LCN2 demonstrated high diagnostic efficiency for LUAD (AUC = 0.818, P < 0.05), especially for stage III-IV patients could reach 0.895. CONCLUSIONS LCN2 as an oncogenic glycoprotein promotes the cancer progression related to immune infiltrates, which might be a potential diagnostic and prognostic marker in LUAD.
Collapse
Affiliation(s)
- Anqi Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kun Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiejun Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng Fan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hengxing Gao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruirui Ma
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Le Gao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial Second People's Hospital, Xi'an 710005, China.
| |
Collapse
|
3
|
Pan Z, Li B, Lu P, Rong G, Wang X. Inhibiting LCN2 can suppress the development of NSCLC by promoting ferroptosis. Gene 2024; 894:148026. [PMID: 38000702 DOI: 10.1016/j.gene.2023.148026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Tumor progression is intricately linked to ferroptosis, a recently discovered form of regulated cell death. However, the specific causes of ferroptosis in non-small cell lung cancer (NSCLC) remain unclear. METHODS In this study, we conducted transcriptome sequencing on NSCLC samples and identified Lipocalin-2 (LCN2) as a significantly differentially expressed gene associated with ferroptosis in NSCLC. Through the intersection of the set of significantly different genes with ferroptosis-related genes, we unveiled the relevance of LCN2 in NSCLC. To validate our findings, several cell lines (BEAS-2B, A549, H1299, PC-9, H1975) were utilized, and Western blot (WB) analysis was performed. We employed a variety of assays, including CCK8, EDU, scratch, Transwell, and specific assays targeting ferroptosis, to investigate the effects of LCN2 on NSCLC cell proliferation, migration, and ferroptosis. Additionally, LCN2 was evaluated in vivo using a mouse tumor xenograft model. RESULTS In both NSCLC patients and cells, LCN2 exhibited upregulation and was associated with a poor prognosis. Inhibition of LCN2 promoted ferroptosis, resulting in the inhibition of NSCLC proliferation and migration. Conversely, the ferroptosis inhibitor Fer-1 promoted NSCLC cell proliferation and migration while inhibiting ferroptosis. Furthermore, down-regulating LCN2 reduced Fer-1's promotion of NSCLC cell migration and proliferation, as well as its prevention of ferroptosis. In vivo inhibition of LCN2 prevented NSCLC cell growth and enhanced ferroptosis. CONCLUSION Based on our research, reducing LCN2 could effectively induce ferroptosis and hinder the growth of NSCLC.
Collapse
Affiliation(s)
- Zhongjun Pan
- Department of Cardiovascular Surgery, The First Afiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China; The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang 212300, Jiangsu Province, China
| | - Ben Li
- Department of Cardiovascular Surgery, The First Afiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Peng Lu
- Department of Cardiovascular Surgery, The First Afiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Guoxiang Rong
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang 212300, Jiangsu Province, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Afiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China.
| |
Collapse
|
4
|
Ghareghomi S, Moosavi-Movahedi F, Saso L, Habibi-Rezaei M, Khatibi A, Hong J, Moosavi-Movahedi AA. Modulation of Nrf2/HO-1 by Natural Compounds in Lung Cancer. Antioxidants (Basel) 2023; 12:antiox12030735. [PMID: 36978983 PMCID: PMC10044870 DOI: 10.3390/antiox12030735] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Oxidative stresses (OSs) are considered a pivotal factor in creating various pathophysiological conditions. Cells have been able to move forward by modulating numerous signaling pathways to moderate the defects of these stresses during their evolution. The company of Kelch-like ECH-associated protein 1 (Keap1) as a molecular sensing element of the oxidative and electrophilic stress and nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) as a master transcriptional regulator of the antioxidant response makes a master cytoprotective antioxidant pathway known as the Keap1/Nrf2 pathway. This pathway is considered a dual-edged sword with beneficial features for both normal and cancer cells by regulating the gene expression of the array of endogenous antioxidant enzymes. Heme oxygenase-1 (HO-1), a critical enzyme in toxic heme removal, is one of the clear state indicators for the duality of this pathway. Therefore, Nrf2/HO-1 axis targeting is known as a novel strategy for cancer treatment. In this review, the molecular mechanism of action of natural antioxidants on lung cancer cells has been investigated by relying on the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
| | - Faezeh Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417466191, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran 1993893973, Iran;
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng 475000, China;
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| |
Collapse
|
5
|
Valashedi MR, Roushandeh AM, Tomita K, Kuwahara Y, Pourmohammadi-Bejarpasi Z, Kozani PS, Sato T, Roudkenar MH. CRISPR/Cas9-mediated knockout of Lcn2 in human breast cancer cell line MDA-MB-231 ameliorates erastin-mediated ferroptosis and increases cisplatin vulnerability. Life Sci 2022; 304:120704. [PMID: 35714703 DOI: 10.1016/j.lfs.2022.120704] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 01/16/2023]
Abstract
AIMS Lipocalin 2 (Lcn2) is an antioxidant-related protein upregulated in various cellular stress conditions, especially cancer. In this study, we abrogated Lcn2 expression in MDA-MB-231 breast cancer cells using the CRISPR/Cas9 technology and evaluated its effect on cellular proliferation, migration, and ferroptotic cell death. MAIN METHODS Validated human Lcn2 CRISPR/Cas9 knockout (KO) and homology-directed repair (HDR) plasmids were co-transfected into MDA-MB-231 breast cancer cells. Lcn2 gene knockout was confirmed at the transcriptional and protein levels using reverse transcription (RT)-PCR and enzyme-linked immunosorbent assay (ELISA). Cell proliferation was measured using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cytotoxicity assay was performed in the presence or absence of erastin, cisplatin (CDDP), and ferrostatin-1 using the CCK-8 method. Ferroptosis level was measured using the malondialdehyde assay lipid peroxidation kit. The migration capacity of the cells was also evaluated using the scratch assay. KEY FINDINGS Targeting Lcn2 using CRISPR/Cas9 reduced cellular proliferation and migration capability, and elevated the vulnerability of MDA-MB-231 cells to cisplatin. Furthermore, Lcn2 expression loss effectively promoted erastin-mediated ferroptosis in MDA-MB-231 cells. SIGNIFICANCE Inhibition of Lcn2 is a potentially useful strategy for sensitizing MDA-MB-231 tumor cells to ferroptotic cell death.
Collapse
Affiliation(s)
- Mehdi Rabiee Valashedi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Luo C, Zhou S, Yin S, Jian L, Luo P, Dong J, Liu E. Lipocalin-2 and Cerebral Stroke. Front Mol Neurosci 2022; 15:850849. [PMID: 35493318 PMCID: PMC9039332 DOI: 10.3389/fnmol.2022.850849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
Abstract
Stroke is a common and devastating disease with an escalating prevalence worldwide. The known secondary injuries after stroke include cell death, neuroinflammation, blood-brain barrier disruption, oxidative stress, iron dysregulation, and neurovascular unit dysfunction. Lipocalin-2 (LCN-2) is a neutrophil gelatinase-associated protein that influences diverse cellular processes during a stroke. The role of LCN-2 has been widely recognized in the peripheral system; however, recent findings have revealed that there are links between LCN-2 and secondary injury and diseases in the central nervous system. Novel roles of LCN-2 in neurons, microglia, astrocytes, and endothelial cells have also been demonstrated. Here, we review the evidence on the regulatory roles of LCN-2 in secondary injuries following a stroke from various perspectives and the pathological mechanisms involved in the modulation of stroke. Overall, our review suggests that LCN-2 is a promising target to promote a better understanding of the neuropathology of stroke.
Collapse
Affiliation(s)
- Chao Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Shuai Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Shi Yin
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lipeng Jian
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Pengren Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jigeng Dong
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Erheng Liu
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
7
|
Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res 2021; 22:133. [PMID: 33926483 PMCID: PMC8082489 DOI: 10.1186/s12931-021-01722-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.
Collapse
|
8
|
Krizanac M, Mass Sanchez PB, Weiskirchen R, Asimakopoulos A. A Scoping Review on Lipocalin-2 and Its Role in Non-Alcoholic Steatohepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:2865. [PMID: 33799862 PMCID: PMC8000927 DOI: 10.3390/ijms22062865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Excess calorie intake and a sedentary lifestyle have made non-alcoholic fatty liver disease (NAFLD) one of the fastest growing forms of liver disease of the modern world. It is characterized by abnormal accumulation of fat in the liver and can range from simple steatosis and non-alcoholic steatohepatitis (NASH) to cirrhosis as well as development of hepatocellular carcinoma (HCC). Biopsy is the golden standard for the diagnosis and differentiation of all NAFLD stages, but its invasiveness poses a risk for patients, which is why new, non-invasive ways of diagnostics ought to be discovered. Lipocalin-2 (LCN2), which is a part of the lipocalin transport protein family, is a protein formally known for its role in iron transport and in inflammatory response. However, in recent years, its implication in the pathogenesis of NAFLD has become apparent. LCN2 shows significant upregulation in several benign and malignant liver diseases, making it a good candidate for the NAFLD biomarker or even a therapeutic target. What makes LCN2 more interesting to study is the fact that it is overexpressed in HCC development induced by chronic NASH, which is one of the primary causes of cancer-related deaths. However, to this day, neither its role as a biomarker for NAFLD nor the molecular mechanisms of its implication in NAFLD pathogenesis have been completely elucidated. This review aims to gather and closely dissect the current knowledge about, sometimes conflicting, evidence on LCN2 as a biomarker for NAFLD, its involvement in NAFLD, and NAFLD-HCC related pathogenesis, while comparing it to the findings in similar pathologies.
Collapse
Affiliation(s)
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany; (M.K.); (P.B.M.S.)
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany; (M.K.); (P.B.M.S.)
| |
Collapse
|
9
|
Yammine L, Zablocki A, Baron W, Terzi F, Gallazzini M. Lipocalin-2 Regulates Epidermal Growth Factor Receptor Intracellular Trafficking. Cell Rep 2020; 29:2067-2077.e6. [PMID: 31722218 DOI: 10.1016/j.celrep.2019.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/02/2019] [Accepted: 10/03/2019] [Indexed: 11/27/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation and lipocalin-2 (Lcn2) expression are frequently observed in the same pathological contexts, such as cancers or chronic kidney disease (CKD). However, the significance of this association is unknown. Here, we describe the role of Lcn2 in regulating EGFR trafficking. We show that Lcn2 increases EGFR cell surface abundance and is required for transforming growth factor α (TGF-α)-induced EGFR recycling to the plasma membrane and sustained activation. Lcn2 binds to the intracellular domain of EGFR in late endosomal compartments and inhibits its lysosomal degradation. Consistently, Lcn2 enhances EGFR-induced cell migration after TGF-α stimulation. In vivo, Lcn2 gene inactivation prevents EGFR recycling to the plasma membrane in an experimental model of CKD. Remarkably, this is associated with a dramatic decrease of renal lesions. Together, our data identify Lcn2 as a key mediator of EGFR trafficking processes. Hence, therapeutic inhibition of Lcn2 may counteract the deleterious effect of EGFR activation.
Collapse
Affiliation(s)
- Lucie Yammine
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Hôpital Necker Enfants Malades, Université Paris Descartes, 149 Rue de Sèvres, Paris 75015, France
| | - Aniela Zablocki
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Hôpital Necker Enfants Malades, Université Paris Descartes, 149 Rue de Sèvres, Paris 75015, France
| | - William Baron
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Hôpital Necker Enfants Malades, Université Paris Descartes, 149 Rue de Sèvres, Paris 75015, France
| | - Fabiola Terzi
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Hôpital Necker Enfants Malades, Université Paris Descartes, 149 Rue de Sèvres, Paris 75015, France
| | - Morgan Gallazzini
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Hôpital Necker Enfants Malades, Université Paris Descartes, 149 Rue de Sèvres, Paris 75015, France.
| |
Collapse
|
10
|
Guo Y, Zhai J, Zhang J, Zhou H. NGAL protects in nasopharyngeal carcinoma by inducing apoptosis and blocking epithelial-mesenchymal transition. Oncol Lett 2020; 19:3711-3718. [PMID: 32391093 PMCID: PMC7204640 DOI: 10.3892/ol.2020.11527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023] Open
Abstract
In recent years, neutrophil gelatinase-associated lipocalin (NGAL) has been considered to be a key molecule in different cancer types and its carcinogenesis may be related to the NGAL/MMP-9 complex. However, its expression pattern and role in nasopharyngeal carcinoma (NPC) has rarely been reported. In the current study, 158 tumor tissues from NPC patients were collected and immunohistochemistry was performed to determine the NGAL protein expression, to investigate the correlation between its expression and clinical and pathological parameters using Chi square analysis. Furthermore, by over-expressing NGAL in NPC cell lines, biological alteration of NPC cells with respect to cell proliferation, migration and invasion was analyzed. Results suggested that high expression of NGAL predicts better prognosis and longer survival. Overexpression of NGAL significantly reduced the proliferation and migration of NPC cells, and induced the apoptosis by activating caspase 3, 8 and 9, and blocking epithelial-mesenchymal transition by inhibiting mothers against decapentaplegic homolog 2/3 phosphorylation.
Collapse
Affiliation(s)
- Ying Guo
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Jianhua Zhai
- Department of Emergency Internal Medicine, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Jing Zhang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Huifang Zhou
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
11
|
Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ. Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Front Oncol 2020; 10:476. [PMID: 32328462 PMCID: PMC7160331 DOI: 10.3389/fonc.2020.00476] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient that plays a complex role in cancer biology. Iron metabolism must be tightly controlled within cells. Whilst fundamental to many cellular processes and required for cell survival, excess labile iron is toxic to cells. Increased iron metabolism is associated with malignant transformation, cancer progression, drug resistance and immune evasion. Depleting intracellular iron stores, either with the use of iron chelating agents or mimicking endogenous regulation mechanisms, such as microRNAs, present attractive therapeutic opportunities, some of which are currently under clinical investigation. Alternatively, iron overload can result in a form of regulated cell death, ferroptosis, which can be activated in cancer cells presenting an alternative anti-cancer strategy. This review focuses on alterations in iron metabolism that enable cancer cells to meet metabolic demands required during different stages of tumorigenesis in relation to metastasis and immune response. The strength of current evidence is considered, gaps in knowledge are highlighted and controversies relating to the role of iron and therapeutic targeting potential are discussed. The key question we address within this review is whether iron modulation represents a useful approach for treating metastatic disease and whether it could be employed in combination with existing targeted drugs and immune-based therapies to enhance their efficacy.
Collapse
Affiliation(s)
- Rikki A. M. Brown
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Kirsty L. Richardson
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Tasnuva D. Kabir
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Debbie Trinder
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Ruth Ganss
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Peter J. Leedman
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
12
|
Gao Y, Lv X, Yang H, Peng L, Ci X. Isoliquiritigenin exerts antioxidative and anti-inflammatory effects via activating the KEAP-1/Nrf2 pathway and inhibiting the NF-κB and NLRP3 pathways in carrageenan-induced pleurisy. Food Funct 2020; 11:2522-2534. [PMID: 32141447 DOI: 10.1039/c9fo01984g] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pleurisy refers to a pleural disease caused by pathogenic factors that stimulate the pleura associated with pleural inflammation and oxidative stress. Isoliquiritigenin (ISL), a flavonoid from the liquorice compound, possesses antioxidative and anti-inflammatory properties. In the current study, we investigated the protective effects of ISL on carrageenan-induced pleurisy and lung injury in mice. The mice were intraperitoneally injected with ISL (30 mg kg-1) twice (each time interval of 12 h), followed by exposure to Car 1 h after the second dose of ISL. Our results indicated that ISL treatment significantly alleviated carrageenan-induced histopathological damage and increased levels of inflammatory cell exudation, protein leakage, and pro-inflammatory mediators. Meanwhile, ISL inhibited reactive oxygen species (ROS) generation, MDA and MPO formation, and SOD and GSH depletion induced by carrageenan. In addition, it decreased the GSSG level and GSSG-to-GSH ratio. In terms of the mechanism, ISL inhibited NOX2 and NOX4 levels, caused the dissociation of KEAP-1 and Nrf2, and activated the downstream genes HO-1, NQO1, GCLC and GCLM, thus decreasing oxidative stress. In addition, ISL exerts protective effects against inflammation by suppressing the NOD-like receptor protein 3 (NLRP3)/NF-κB pathway and the high levels of iNOS and COX-2. In summary, our results reinforce the hypothesis that ISL exerts protective effects on carrageenan-induced pleurisy and lung injury in a manner that can be attributed to Nrf2-mediated antioxidative activities and NLRP3/NF-κB-mediated anti-inflammatory activities.
Collapse
Affiliation(s)
- Yun Gao
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China.
| | | | | | | | | |
Collapse
|
13
|
Implication and role of neutrophil gelatinase-associated lipocalin in cancer: lipocalin-2 as a potential novel emerging comprehensive therapeutic target for a variety of cancer types. Mol Biol Rep 2020; 47:2327-2346. [PMID: 31970626 DOI: 10.1007/s11033-020-05261-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of mortalities worldwide. Over the past few decades, exploration of molecular mechanisms behind cancer initiation and progression has been of great interest in the viewpoint of both basic and clinical scientists. It is generally believed that identification of key molecules implicated in cancer pathology not only improves our understanding of the disease, but also could result in introduction of novel therapeutic strategies. Neutrophil gelatinase-associated lipocalin (NGAL)/lipocalin-2 (LCN2) is a member of lipocalin superfamily with a variety of functions. Although the main function of LCN2 is still unknown, many studies confirmed its significant role in the initiation, progression, and metastasis of various types of cancer. Furthermore, aberrant expression of LCN2 is also concerned with the chemo- and radio-resistant phenotypes of tumors. Here, we will review the contribution of known functions of LCN2 to the pathophysiology of cancer. We also highlight how the deregulated expression of LCN2 is associated with a variety of fatal types of cancer for which there are no effective therapeutic modalities. The unique and multiple functions of LCN2 and its widespread expression in different types of cancer prompted us to suggest LCN2 could be considered either as a valuable diagnostic and prognostic biomarker or as a potential novel therapeutic target.
Collapse
|
14
|
Yang Y, Li F, Luo X, Jia B, Zhao X, Liu B, Gao R, Yang L, Wei W, He J. Identification of LCN1 as a Potential Biomarker for Breast Cancer by Bioinformatic Analysis. DNA Cell Biol 2019; 38:1088-1099. [PMID: 31424267 DOI: 10.1089/dna.2019.4843] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The biological functions of lipocalin-1 (LCN1) are involved in innate immune responses and act as a physiological scavenger of potentially harmful lipophilic molecules. However, the relevance of LCN1 with cancer is rarely concerned currently. The aim of this study is to address the relevance of LCN1 with BRCA by bioinformatics. In this study, we found that the expressions of LCN1 increased significantly in various cancerous tissues, including BRCA, compared with their adjacent normal tissues through the TIMER database. Furthermore, UALCAN database analysis showed that the expression of LCN1 increased gradually from stage 1 to stage 4 and was upregulated in BRCA patients with different races and subtypes compared with that in the normal. In addition, those patients with perimenopause and postmenopause status displayed higher LCN1 expression. Importantly, LCN1 genetic alterations, including copy number amplification, deep deletion, and missense mutation, could be found, and the alteration frequency showed difference in various invasive BRCA through cBioPortal database. Moreover, a positive correlation between LCN1 somatic copy number alterations and immune cell enrichments was revealed in basal like BRCA by GISTIC 2.0. Finally, analysis on prognostic value of LCN1 by Kaplan-Meier plotter showed that low LCN1 expression correlated with poor prognosis for relapse-free survival in all types of BRCA, overall survival in luminal B BRCA, distant metastasis free survival in human epithelial growth factor receptor-2 (HER2) positive BRCA, and postprogression survival (PPS) in luminal A BRCA. But high LCN1 expression also displayed poor prognosis for PPS in HER2 positive BRCA. The results together verified the significance of LCN1 in BRCA, suggesting that it may be a potential biomarker for BRCA diagnosis.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China.,Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co. Ltd., Beijing, P.R. China
| | - Feng Li
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Xueying Luo
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Binghan Jia
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co. Ltd., Beijing, P.R. China
| | - Xiaoling Zhao
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co. Ltd., Beijing, P.R. China
| | - Baoer Liu
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Rui Gao
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Liping Yang
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Wei Wei
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Jinsong He
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
15
|
Zhang WZ, Butler JJ, Cloonan SM. Smoking-induced iron dysregulation in the lung. Free Radic Biol Med 2019; 133:238-247. [PMID: 30075191 PMCID: PMC6355389 DOI: 10.1016/j.freeradbiomed.2018.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Iron is one of the most abundant transition elements and is indispensable for almost all organisms. While the ability of iron to participate in redox chemistry is an essential requirement for participation in a range of vital enzymatic reactions, this same feature of iron also makes it dangerous in the generation of hydroxyl radicals and superoxide anions. Given the high local oxygen tensions in the lung, the regulation of iron acquisition, utilization, and storage therefore becomes vitally important, perhaps more so than in any other biological system. Iron plays a critical role in the biology of essentially every cell type in the lung, and in particular, changes in iron levels have important ramifications on immune function and the local lung microenvironment. There is substantial evidence that cigarette smoke causes iron dysregulation, with the implication that iron may be the link between smoking and smoking-related lung diseases. A better understanding of the connection between cigarette smoke, iron, and respiratory diseases will help to elucidate pathogenic mechanisms and aid in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- William Z Zhang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY 10021, USA
| | - James J Butler
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
16
|
Musolino V, Palus S, Latouche C, Gliozzi M, Bosco F, Scarano F, Nucera S, Carresi C, Scicchitano M, von Haehling S, Jaisser F, Hasenfuss G, Anker SD, Mollace V, Springer J. Cardiac expression of neutrophil gelatinase-associated lipocalin in a model of cancer cachexia-induced cardiomyopathy. ESC Heart Fail 2019; 6:89-97. [PMID: 30367561 PMCID: PMC6352893 DOI: 10.1002/ehf2.12372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
AIMS Cachexia is a severe consequence of cancer. Although cancer-induced heart atrophy leads to cardiac dysfunction and heart failure (HF), biomarkers for their diagnosis have not been identified. Neutrophil gelatinase-associated lipocalin (NGAL) is an aldosterone-responsive gene increased in HF. We studied NGAL and its association with aldosterone levels in a model of cancer cachexia-induced cardiomyopathy. METHODS AND RESULTS Rats were injected with Yoshida 108 AH-130 hepatoma cells to induce tumour. Cachectic rats were treated daily, for 16 days, with placebo or with 5 or 50 mg/kg/day of spironolactone. Cardiac function was analysed by echocardiography at baseline and at Day 11. Weight loss and atrophy of lean body and fat mass of cachectic rats were significantly attenuated by spironolactone. Cardiac dysfunction of tumour-bearing rats was improved by spironolactone. Plasma aldosterone was up-regulated from 337 ± 7 pg/mL in sham animals to 591 ± 31 pg/mL in the cachectic rats (P < 0.001 vs. sham). Treatment with 50 or 5 mg/kg/day of spironolactone reduced plasma aldosterone to 396 ± 22 and 391 ± 25 pg/mL (P < 0.01 vs. placebo). Plasma levels of NGAL were also increased in cachectic rats (1.462 ± 0.3603 μg/mL) than in controls (0.0936 ± 6 μg/mL, P < 0.001). Spironolactone treatment (50 mg/kg/day) significantly reduced cardiac mRNA and protein NGAL levels (P < 0.05 and P < 0.001 vs. placebo, respectively). NGAL mRNA and protein levels were overexpressed in cachectic animal hearts treated with placebo, compared with control (P < 0.05 and P < 0.01 vs. sham). Spironolactone treatment at 50 mg/kg/day reduced significantly cardiac NGAL (P < 0.05 and P < 0.001 vs. placebo). CONCLUSIONS Cancer cachexia induced increased levels of aldosterone and NGAL, contributing to worsening cardiac damage in cancer cachexia-induced cardiomyopathy. Spironolactone treatment may greatly attenuate cardiac dysfunction and lean mass atrophy associated with cancer cachexia.
Collapse
Affiliation(s)
- Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC‐FSH)University of Catanzaro “Magna Graecia”CatanzaroItaly
| | - Sandra Palus
- Department of CardiologyUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | | | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC‐FSH)University of Catanzaro “Magna Graecia”CatanzaroItaly
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC‐FSH)University of Catanzaro “Magna Graecia”CatanzaroItaly
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC‐FSH)University of Catanzaro “Magna Graecia”CatanzaroItaly
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC‐FSH)University of Catanzaro “Magna Graecia”CatanzaroItaly
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC‐FSH)University of Catanzaro “Magna Graecia”CatanzaroItaly
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC‐FSH)University of Catanzaro “Magna Graecia”CatanzaroItaly
| | - Stephan von Haehling
- Department of CardiologyUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | | | - Gerd Hasenfuss
- Department of CardiologyUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Stefan D. Anker
- Division of Cardiology and Metabolism – Heart Failure, Cachexia & Sarcopenia, Department of Cardiology (CVK); and Berlin‐Brandenburg Center for Regenerative Therapies (BCRT); Deutsches Zentrum für Herz‐Kreislauf‐Forschung (DZHK) Berlin; Charité Universitätsmedizin BerlinBerlinGermany
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC‐FSH)University of Catanzaro “Magna Graecia”CatanzaroItaly
| | - Jochen Springer
- Department of CardiologyUniversity Medical Center Göttingen (UMG)GöttingenGermany
| |
Collapse
|
17
|
Bauvois B, Susin SA. Revisiting Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Cancer: Saint or Sinner? Cancers (Basel) 2018; 10:cancers10090336. [PMID: 30231474 PMCID: PMC6162539 DOI: 10.3390/cancers10090336] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/13/2022] Open
Abstract
Human neutrophil gelatinase-associated lipocalin (NGAL) is a glycoprotein present in a wide variety of tissues and cell types. NGAL exists as a 25 kDa monomer, a 46 kDa homodimer (the most abundant form in healthy subjects) and a 130 kDa disulfide-linked heterodimer bound to latent matrix metalloproteinase-9. Dysregulated expression of NGAL in human malignancies suggests its value as a clinical marker. A growing body of evidence is highlighting NGAL’s paradoxical (i.e., both beneficial and detrimental) effects on cellular processes associated with tumor development (proliferation, survival, migration, invasion, and multidrug resistance). At least two distinct cell surface receptors are identified for NGAL. This review (i) summarizes our current knowledge of NGAL’s expression profiles in solid tumors and leukemias, and (ii) critically evaluates the beneficial and detrimental activities of NGAL having been documented in a diverse range of cancer-derived cell lines. A better understanding of the causal relationships between NGAL dysregulation and tumor development will require a fine analysis of the molecular aspects and biological role(s) of NGAL both in primary tumors and at different stages of disease. Having an accurate picture of NGAL’s contribution to tumor progression is a prerequisite for attempting to modulate this protein as a putative therapeutic target.
Collapse
Affiliation(s)
- Brigitte Bauvois
- INSERM UMRS 1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, 75006 Paris, France.
- Sorbonne Universités Paris Cité, F-75006 Paris, France.
- Université Paris Descartes, F-75005 Paris, France.
| | - Santos A Susin
- INSERM UMRS 1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, 75006 Paris, France.
- Sorbonne Universités Paris Cité, F-75006 Paris, France.
- Université Paris Descartes, F-75005 Paris, France.
| |
Collapse
|
18
|
NGAL is Downregulated in Oral Squamous Cell Carcinoma and Leads to Increased Survival, Proliferation, Migration and Chemoresistance. Cancers (Basel) 2018; 10:cancers10070228. [PMID: 29996471 PMCID: PMC6071146 DOI: 10.3390/cancers10070228] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 01/04/2023] Open
Abstract
Oral cancer is a major public health burden worldwide. The lack of biomarkers for early diagnosis has increased the difficulty in managing this disease. Recent studies have reported that neutrophil gelatinase-associated lipocalin (NGAL), a secreted glycoprotein, is upregulated in various tumors. In our study, we found that NGAL was significantly downregulated in primary malignant and metastatic tissues of oral cancer in comparison to normal tissues. The downregulation of NGAL was strongly correlated with both degree of differentiation and stage (I–IV); it can also serve as a prognostic biomarker for oral cancer. Additionally, tobacco carcinogens were found to be involved in the downregulation of NGAL. Mechanistic studies revealed that knockdown of NGAL increased oral cancer cell proliferation, survival, and migration; it also induced resistance against cisplatin. Silencing of NGAL activated mammalian target of rapamycin (mTOR)signaling and reduced autophagy by the liver kinase B1 (LKB1)-activated protein kinase (AMPK)-p53-Redd1 signaling axis. Moreover, cyclin-D1, Bcl-2, and matrix metalloproteinase-9 (MMP-9) were upregulated, and caspase-9 was downregulated, suggesting that silencing of NGAL increases oral cancer cell proliferation, survival, and migration. Thus, from our study, it is evident that downregulation of NGAL activates the mTOR pathway and helps in the progression of oral cancer.
Collapse
|
19
|
Yuan F, Lu W. Prediction of potential drivers connecting different dysfunctional levels in lung adenocarcinoma via a protein-protein interaction network. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2284-2293. [PMID: 29197663 DOI: 10.1016/j.bbadis.2017.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/13/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022]
Abstract
Lung cancer is a serious disease that threatens an affected individual's life. Its pathogenesis has not yet to be fully described, thereby impeding the development of effective treatments and preventive measures. "Cancer driver" theory considers that tumor initiation can be associated with a number of specific mutations in genes called cancer driver genes. Four omics levels, namely, (1) methylation, (2) microRNA, (3) mutation, and (4) mRNA levels, are utilized to cluster cancer driver genes. In this study, the known dysfunctional genes of these four levels were used to identify novel driver genes of lung adenocarcinoma, a subtype of lung cancer. These genes could contribute to the initiation and progression of lung adenocarcinoma in at least two levels. First, random walk with restart algorithm was performed on a protein-protein interaction (PPI) network constructed with PPI information in STRING by using known dysfunctional genes as seed nodes for each level, thereby yielding four groups of possible genes. Second, these genes were further evaluated in a test strategy to exclude false positives and select the most important ones. Finally, after conducting an intersection operation in any two groups of genes, we obtained several inferred driver genes that contributed to the initiation of lung adenocarcinoma in at least two omics levels. Several genes from these groups could be confirmed according to recently published studies. The inferred genes reported in this study were also different from those described in a previous study, suggesting that they can be used as essential supplementary data for investigations on the initiation of lung adenocarcinoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Science & Technology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China.
| | - WenCong Lu
- Department of Chemistry, Shanghai University, Shanghai 200072, China.
| |
Collapse
|
20
|
Increased neutrophil gelatinase-associated lipocalin (NGAL) promotes airway remodelling in chronic obstructive pulmonary disease. Clin Sci (Lond) 2017; 131:1147-1159. [PMID: 28381600 DOI: 10.1042/cs20170096] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023]
Abstract
Airway remodelling is an important component of chronic obstructive pulmonary disease (COPD). Neutrophil gelatinase-associated lipocalin (NGAL) from neutrophils may drive COPD epithelial–mesenchymal transition (EMT). NGAL expression was quantified in the lungs of COPD patients and bronchoalveolar lavage fluid (BALF) of ozone-treated mice. Reticular basement membrane (RBM) thickness and E-cadherin and α-smooth muscle actin (α-SMA) expression were determined in mice airways. Effects of cigarette smoke extract (CSE) and inflammatory factors on NGAL expression in human neutrophils as well as the effects of NGAL on airway structural cells was assessed. NGAL was mainly distributed in neutrophils and enhanced in lung tissues of both COPD patients and BALF of ozone-treated mice. We showed decreased E-cadherin and increased α-SMA expression in bronchial epithelium and increased RBM thickness in ozone-treated animals. In vitro, CSE, IL-1β and IL-17 enhanced NGAL mRNA expression in human neutrophils. NGAL, in turn, down-regulated the expression of E-cadherin and up-regulated α-SMA expression in 16HBE cells via the WNT/glycogensynthase kinase-3β (GSK-3β) pathway. Furthermore, NGAL promoted the proliferation and migration of human bronchial smooth muscle cells (HASMCs). The present study suggests that elevated NGAL promotes COPD airway remodelling possibly through altered EMT. NGAL may be a potential target for reversing airway obstruction and remodelling in COPD.
Collapse
|
21
|
Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial Activity of Mesenchymal Stem Cells: Current Status and New Perspectives of Antimicrobial Peptide-Based Therapies. Front Immunol 2017; 8:339. [PMID: 28424688 PMCID: PMC5371613 DOI: 10.3389/fimmu.2017.00339] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/09/2017] [Indexed: 12/20/2022] Open
Abstract
While mesenchymal stem cells (MSCs)-based therapy appears to be promising, there are concerns regarding possible side effects related to the unwanted suppression of antimicrobial immunity leading to an increased risk of infection. Conversely, recent data show that MSCs exert strong antimicrobial effects through indirect and direct mechanisms, partially mediated by the secretion of antimicrobial peptides and proteins (AMPs). In fact, MSCs have been reported to increase bacterial clearance in preclinical models of sepsis, acute respiratory distress syndrome, and cystic fibrosis-related infections. This article reviews the current evidence regarding the direct antimicrobial effector function of MSCs, focusing mainly on the role of MSCs-derived AMPs. The strategies that might modulate the expression and secretion of these AMPs, leading to enhanced antimicrobial effect, are highlighted. Furthermore, studies evaluating the presence of AMPs in the cargo of extracellular vesicles (EVs) are underlined as perspective opportunities to develop new drug delivery tools. The antimicrobial potential of MSCs-derived EVs can also be heightened through cell conditioning and/or drug loading. Finally, improving the pharmacokinetics and delivery, in addition to deciphering the multi-target drug status of AMPs, should synergistically lead to key advances against infections caused by drug-resistant strains.
Collapse
Affiliation(s)
- Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| |
Collapse
|
22
|
Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial Activity of Mesenchymal Stem Cells: Current Status and New Perspectives of Antimicrobial Peptide-Based Therapies. Front Immunol 2017. [PMID: 28424688 DOI: 10.3389/fimmu.2017.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
While mesenchymal stem cells (MSCs)-based therapy appears to be promising, there are concerns regarding possible side effects related to the unwanted suppression of antimicrobial immunity leading to an increased risk of infection. Conversely, recent data show that MSCs exert strong antimicrobial effects through indirect and direct mechanisms, partially mediated by the secretion of antimicrobial peptides and proteins (AMPs). In fact, MSCs have been reported to increase bacterial clearance in preclinical models of sepsis, acute respiratory distress syndrome, and cystic fibrosis-related infections. This article reviews the current evidence regarding the direct antimicrobial effector function of MSCs, focusing mainly on the role of MSCs-derived AMPs. The strategies that might modulate the expression and secretion of these AMPs, leading to enhanced antimicrobial effect, are highlighted. Furthermore, studies evaluating the presence of AMPs in the cargo of extracellular vesicles (EVs) are underlined as perspective opportunities to develop new drug delivery tools. The antimicrobial potential of MSCs-derived EVs can also be heightened through cell conditioning and/or drug loading. Finally, improving the pharmacokinetics and delivery, in addition to deciphering the multi-target drug status of AMPs, should synergistically lead to key advances against infections caused by drug-resistant strains.
Collapse
Affiliation(s)
- Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| |
Collapse
|
23
|
Induction of Lipocalin2 in a Rat Model of Lung Irradiation. Int J Mol Sci 2016; 17:ijms17050637. [PMID: 27136530 PMCID: PMC4881463 DOI: 10.3390/ijms17050637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023] Open
Abstract
Previously, we showed that lipocalin2 (LCN2) serum levels increased after liver irradiation and during acute-phase conditions. Here, we evaluate LCN2 expression and serum levels after single-dose lung irradiation with 25 Gy, percutaneously administered to the lung of randomly-paired male Wistar rats. Due to the concave anatomy of the lung recesses, the irradiation field included the upper part of the liver. No rat died due to irradiation. In control tissue, lung immunohistochemistry showed a high constitutive expression of LCN2+ granulocytes. LCN2 mRNA levels in lung tissue increased up to 24 h (9 ± 2.3-fold) after irradiation. However, serum LCN2 levels remained undetectable after lung irradiation. LCN2 expression in the upper part of the liver increased up to 4.2-fold after lung irradiation, but the lower liver showed an early decrease. Acute-phase cytokines (IL-1β and TNF-α) showed a significant increase on transcript level in both lung and upper liver, whilst the lower liver did not show any considerable increase. In conclusion, constitutive expression of LCN2 in local immune cells demonstrates its local role during stress conditions in the lung. The absence of LCN2 in the serum strengthens our previous findings that the liver is the key player in secreting LCN2 during stress conditions with liver involvement.
Collapse
|