1
|
Geng C, Zeng J, Deng X, Xia F, Xu X. Molecular Dynamics Investigation into the Stability of KRas and CRaf Multimeric Complexes. J Phys Chem B 2025; 129:3306-3316. [PMID: 40126127 DOI: 10.1021/acs.jpcb.4c08767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
In the Ras/Raf/MAPK signaling pathway, Ras and Raf proteins interact synergistically to form a tetrameric complex. NMR experiments have demonstrated that Ras dimerizes in solution and binds stably to Raf, forming Ras·Raf complexes. In this study, we constructed the ternary and quaternary complexes of KRas and CRaf based on crystal structures, denoted as (KRas)2·CRaf and (KRas)2·(CRaf)2, respectively. Molecular dynamics (MD) simulations were performed to investigate the stability of these complexes, while hydrogen bonds as well as salt bridges formed at the protein-protein interaction interfaces were analyzed based on simulation trajectories. The results revealed that the KRas·CRaf complex is more stable in explicit solvent compared with the KRas dimer. Formation of the stable quaternary complex (KRas)2·(CRaf)2 might be attributed to the association of two binary KRas·CRaf complexes. Additionally, MD simulations of the KRasG12D·CRaf complex revealed a stable and extended binding site at the KRas-CRaf interaction interface. This binding site was identified as a potential therapeutic target to block abnormal signal transmission in the pathway.
Collapse
Affiliation(s)
- Chongli Geng
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Xianming Deng
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen University, 361003 Xiamen, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Sarica Z, Kurkcuoglu O, Sungur FA. In Silico Identification of Putative Allosteric Pockets and Inhibitors for the KRASG13D-SOS1 Complex in Cancer Therapy. Int J Mol Sci 2025; 26:3293. [PMID: 40244134 PMCID: PMC11989364 DOI: 10.3390/ijms26073293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
RAS mutations occur in about 30% of human cancers, leading to enhanced RAS signaling and tumor growth. KRAS is the most commonly mutated oncogene in human tumors, especially lung, pancreatic, and colorectal cancers. Direct targeting of KRAS is difficult due to its highly conserved sequence; but, its complex with the guanine nucleotide exchange factor Son of Sevenless (SOS) 1 promises an attractive target for inhibiting RAS-mediated signaling. Here, we first revealed putative allosteric binding sites of the SOS1, KRASG12C-SOS1 complex, and the ternary KRASG13D-SOS1 complex structures using two network-based models, the essential site scanning analysis and the residue interaction network model. The results enabled us to identify two new putative allosteric pockets for the ternary KRASG13D-SOS1 complex. These were then screened together with the known ligand binding site against the natural compounds in the InterBioScreen (IBS) database using the Glide software package developed by Schrödinger, Inc. The docking poses of seven hit compounds were assessed using 400 ns long molecular dynamics (MD) simulations with two independent replicas using Desmond, coupled with thermal MM-GBSA calculations for the estimation of the binding free energy values. The structural skeleton of the seven proposed compounds consists of different functional groups and heterocyclic rings that possess anti-cancer activity and exhibit persistent interactions with key residues in binding pockets throughout the MD simulations. STOCK1N-09823 was determined as the most promising hit that promoted the disruption of the interactions R73 (chain A)/N879 and R73 (chain A)/Y884, which are key for SOS1-mediated KRAS activation.
Collapse
Affiliation(s)
- Zehra Sarica
- Computational Science and Engineering Division, Informatics Institute, Istanbul Technical University, Istanbul 34469, Türkiye;
| | - Ozge Kurkcuoglu
- Department of Chemical Engineering, Istanbul Technical University, Istanbul 34469, Türkiye
| | - Fethiye Aylin Sungur
- Computational Science and Engineering Division, Informatics Institute, Istanbul Technical University, Istanbul 34469, Türkiye;
| |
Collapse
|
3
|
Prajapati V, Singh AK, Kumar A, Singh H, Pathak P, Grishina M, Kumar V, Khalilullah H, Verma A, Kumar P. Structural insights, regulation, and recent advances of RAS inhibitors in the MAPK signaling cascade: a medicinal chemistry perspective. RSC Med Chem 2025:d4md00923a. [PMID: 40052089 PMCID: PMC11880839 DOI: 10.1039/d4md00923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/25/2025] [Indexed: 03/09/2025] Open
Abstract
The MAPK pathway has four main components: RAS, RAF, MEK, and ERK. Among these, RAS is the most frequently mutated protein and the leading cause of cancer. The three isoforms of the RAS gene are HRAS, NRAS, and KRAS. The KRAS gene is characterized by two splice variants, K-Ras4A and K-Ras4B. The occurrence of cancer often involves a mutation in both KRAS4A and KRAS4B. In this study, we have elucidated the mechanism of the RAS protein complex and the movement of switches I and II. Only two RAS inhibitors, sotorasib and adagrasib, have been approved by the FDA, and several are in clinical trials. This review comprises recent developments in synthetic RAS inhibitors, their unique properties, their importance in inhibiting RAS mutations, and the current challenges in developing new RAS inhibitors. This review will undoubtedly help researchers design novel RAS inhibitors.
Collapse
Affiliation(s)
- Vineet Prajapati
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to be University) Hyderabad Campus India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- University Centre for Research and Development, Chandigarh University Gharuan 140413 Punjab India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University Unayzah 51911 Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- Department of Allied Sciences (Chemistry), Graphic Era (Deemed to be University) Dehradun 248002 India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
4
|
Jaradat NJ, Hatmal M, Alqudah D, Taha MO. Computational workflow for discovering small molecular binders for shallow binding sites by integrating molecular dynamics simulation, pharmacophore modeling, and machine learning: STAT3 as case study. J Comput Aided Mol Des 2023; 37:659-678. [PMID: 37597062 DOI: 10.1007/s10822-023-00528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
STAT3 belongs to a family of seven transcription factors. It plays an important role in activating the transcription of various genes involved in a variety of cellular processes. High levels of STAT3 are detected in several types of cancer. Hence, STAT3 inhibition is considered a promising therapeutic anti-cancer strategy. However, since STAT3 inhibitors bind to the shallow SH2 domain of the protein, it is expected that hydration water molecules play significant role in ligand-binding complicating the discovery of potent binders. To remedy this issue, we herein propose to extract pharmacophores from molecular dynamics (MD) frames of a potent co-crystallized ligand complexed within STAT3 SH2 domain. Subsequently, we employ genetic function algorithm coupled with machine learning (GFA-ML) to explore the optimal combination of MD-derived pharmacophores that can account for the variations in bioactivity among a list of inhibitors. To enhance the dataset, the training and testing lists were augmented nearly a 100-fold by considering multiple conformers of the ligands. A single significant pharmacophore emerged after 188 ns of MD simulation to represent STAT3-ligand binding. Screening the National Cancer Institute (NCI) database with this model identified one low micromolar inhibitor most likely binds to the SH2 domain of STAT3 and inhibits this pathway.
Collapse
Affiliation(s)
- Nour Jamal Jaradat
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Mamon Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Dana Alqudah
- Cell Therapy Center, the University of Jordan, Amman, 11942, Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
5
|
Pagba CV, Gupta AK, Gorfe AA. Small-Molecule Inhibition of KRAS through Conformational Selection. ACS OMEGA 2023; 8:31419-31426. [PMID: 37663463 PMCID: PMC10468774 DOI: 10.1021/acsomega.3c04013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Mutations in KRAS account for about 20% of human cancers. Despite the major progress in recent years toward the development of KRAS inhibitors, including the discovery of covalent inhibitors of the G12C KRAS variant for the treatment of non-small-cell lung cancer, much work remains to be done to discover broad-acting inhibitors to treat many other KRAS-driven cancers. In a previous report, we showed that a 308.4 Da small-molecule ligand [(2R)-2-(N'-(1H-indole-3-carbonyl)hydrazino)-2-phenyl-acetamide] binds to KRAS with low micro-molar affinity [Chem. Biol. Drug Des.2019; 94(2):1441-1456]. Binding of this ligand, which we call ACA22, to the p1 pocket of KRAS and its interactions with residues at beta-strand 1 and the switch loops have been supported by data from nuclear magnetic resonance spectroscopy and microscale thermophoresis experiments. However, the inhibitory potential of the compound was not demonstrated. Here, we show that ACA22 inhibits KRAS-mediated signal transduction in cells expressing wild type (WT) and G12D mutant KRAS and reduces levels of guanosine triphosphate-loaded WT KRAS more effectively than G12D KRAS. We ruled out the direct effect on nucleotide exchange or effector binding as possible mechanisms of inhibition using a variety of biophysical assays. Combining these observations with binding data that show comparable affinities of the compound for the active and inactive forms of the mutant but not the WT, we propose conformational selection as a possible mechanism of action of ACA22.
Collapse
Affiliation(s)
- Cynthia V Pagba
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Amit K Gupta
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| |
Collapse
|
6
|
Desikan SP, Ravandi F, Pemmaraju N, Konopleva M, Loghavi S, Jabbour EJ, Daver N, Jain N, Chien KS, Maiti A, Montalban-Bravo G, Kadia TM, Macaron W, DeLumpa R, Kwari M, Borthakur G, Short NJ. A Phase II Study of Azacitidine, Venetoclax and Trametinib in Relapsed or Refractory AML Harboring RAS Pathway-Activating Mutations. Acta Haematol 2022; 145:529-536. [PMID: 35717939 DOI: 10.1159/000525566] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION RAS pathway mutations are common mechanisms of resistance to acute myeloid leukemia (AML) therapies. Trametinib, an oral MEK inhibitor, has been shown to have single-agent activity in relapsed/refractory AML and preclinical synergy with venetoclax. METHODS We conducted a single-center, open-label, phase 2 trial of the combination of azacitidine, venetoclax, and trametinib in patients with relapsed or refractory AML harboring a RAS pathway-activating mutation. RESULTS Sixteen patients were treated. The patients were heavily pretreated with a median number of 4 prior therapies; 13 (81%) had received prior hypomethylating agent (HMA) with venetoclax and 8 (50%) had undergone prior stem cell transplant. Four patients (25%) responded (CR, n=1; CRi, n=1; MLFS, n=2). Two of the 3 patients (67%) who had not previously received HMA plus venetoclax responded; in contrast, only 2 of the 13 patients (15%) who had previously received HMA plus venetoclax responded. The median OS was 2.4 months, and the 6-month OS rate was 31%. Related grade 3-4 adverse events occurred in 50% of patients, and 50% of patients required a dose adjustment of trametinib. CONCLUSIONS The combination of azacitidine, venetoclax and trametinib had only modest activity in patients with relapsed/refractory AML, with a response rate that was similar to previous reports of trametinib monotherapy. Substantial toxicity was observed with this combination. Given the established role of RAS pathway mutations in mediating resistance to AML therapies, future studies of better tolerated, more active inhibitors of this pathway are still needed.
Collapse
Affiliation(s)
- Sai Prasad Desikan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly S Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Walid Macaron
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ricardo DeLumpa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Monica Kwari
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
Zeng J, Chen J, Xia F, Cui Q, Deng X, Xu X. Identification of functional substates of KRas during GTP hydrolysis with enhanced sampling simulations. Phys Chem Chem Phys 2022; 24:7653-7665. [PMID: 35297922 PMCID: PMC8972078 DOI: 10.1039/d2cp00274d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As the hub of major signaling pathways, Ras proteins are implicated in 19% of tumor-caused cancers due to perturbations in their conformational and/or catalytic properties. Despite numerous studies, the functions of the conformational substates for the most important isoform, KRas, remain elusive. In this work, we perform an extensive simulation analysis on the conformational landscape of KRas in its various chemical states during the GTP hydrolysis cycle: the reactant state KRasGTP·Mg2+, the intermediate state KRasGDP·Pi·Mg2+ and the product state KRasGDP·Mg2+. The results from enhanced sampling simulations reveal that State 1 of KRasGTP·Mg2+ has multiple stable substates in solution, one of which might account for interacting with GEFs. State 2 of KRasGTP·Mg2+ features two substates "Tyr32in" and "Tyr32out", which are poised to interact with effectors and GAPs, respectively. For the intermediate state KRasGDP·Pi·Mg2+, Gln61 and Pi are found to assume a broad set of conformations, which might account for the weak oncogenic effect of Gln61 mutations in KRas in contrast to the situation in HRas and NRas. Finally, the product state KRasGDP·Mg2+ has more than two stable substates in solution, pointing to a conformation-selection mechanism for complexation with GEFs. Based on these results, some specific inhibition strategies for targeting the binding sites of the high-energy substates of KRas during GTP hydrolysis are discussed.
Collapse
Affiliation(s)
- Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Jian Chen
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China.
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China.
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361101, China.
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
8
|
López CA, Agarwal A, Van QN, Stephen AG, Gnanakaran S. Unveiling the Dynamics of KRAS4b on Lipid Model Membranes. J Membr Biol 2021; 254:201-216. [PMID: 33825026 PMCID: PMC8052243 DOI: 10.1007/s00232-021-00176-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/16/2021] [Indexed: 12/23/2022]
Abstract
Small GTPase proteins are ubiquitous and responsible for regulating several processes related to cell growth and differentiation. Mutations that stabilize their active state can lead to uncontrolled cell proliferation and cancer. Although these proteins are well characterized at the cellular scale, the molecular mechanisms governing their functions are still poorly understood. In addition, there is limited information about the regulatory function of the cell membrane which supports their activity. Thus, we have studied the dynamics and conformations of the farnesylated KRAS4b in various membrane model systems, ranging from binary fluid mixtures to heterogeneous raft mimics. Our approach combines long time-scale coarse-grained (CG) simulations and Markov state models to dissect the membrane-supported dynamics of KRAS4b. Our simulations reveal that protein dynamics is mainly modulated by the presence of anionic lipids and to some extent by the nucleotide state (activation) of the protein. In addition, our results suggest that both the farnesyl and the polybasic hypervariable region (HVR) are responsible for its preferential partitioning within the liquid-disordered (Ld) domains in membranes, potentially enhancing the formation of membrane-driven signaling platforms.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Animesh Agarwal
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Que N Van
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
9
|
Gorfe AA, Cho KJ. Approaches to inhibiting oncogenic K-Ras. Small GTPases 2021; 12:96-105. [PMID: 31438765 PMCID: PMC7849769 DOI: 10.1080/21541248.2019.1655883] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Activating somatic K-Ras mutations are associated with >15% all human tumors and up to 90% of specific tumor types such as pancreatic cancer. Successfully inhibiting abnormal K-Ras signaling would therefore be a game changer in cancer therapy. However, K-Ras has long been considered an undruggable target for various reasons. This view is now changing by the discovery of allosteric inhibitors that directly target K-Ras and inhibit its functions, and by the identification of new mechanisms to dislodge it from the plasma membrane and thereby abrogate its cellular activities. In this review, we will discuss recent progresses and challenges to inhibiting aberrant K-Ras functions by these two approaches. We will also provide a broad overview of other approaches such as inhibition of K-Ras effectors, and offer a brief perspective on the way forward.
Collapse
Affiliation(s)
- Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Programs of Biochemistry & Cell and Therapeutics & Pharmacology, MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
10
|
Liang J, Karagiannis C, Pitsillou E, Darmawan KK, Ng K, Hung A, Karagiannis TC. Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface. Comput Biol Chem 2020; 89:107372. [PMID: 32911432 PMCID: PMC7833639 DOI: 10.1016/j.compbiolchem.2020.107372] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 main protease (Mpro) has an important role in the viral life cycle. Inhibition of the active site or dimerization site of Mpro can mitigate activity. Mapping reveals a reactive pocket in the dimerization pocket at the apex of Mpro. Blind docking shows that ligands may preferentially bind at the apex of Mpro. Stable ligand interactions are formed at the active and apex sites of Mpro.
The SARS-CoV-2 virus is causing COVID-19 resulting in an ongoing pandemic with serious health, social, and economic implications. Much research is focused in repurposing or identifying new small molecules which may interact with viral or host-cell molecular targets. An important SARS-CoV-2 target is the main protease (Mpro), and the peptidomimetic α-ketoamides represent prototypical experimental inhibitors. The protease is characterised by the dimerization of two monomers each which contains the catalytic dyad defined by Cys145 and His41 residues (active site). Dimerization yields the functional homodimer. Here, our aim was to investigate small molecules, including lopinavir and ritonavir, α-ketoamide 13b, and ebselen, for their ability to interact with the Mpro. The sirtuin 1 agonist SRT1720 was also used in our analyses. Blind docking to each monomer individually indicated preferential binding of the ligands in the active site. Site-mapping of the dimeric protease indicated a highly reactive pocket in the dimerization region at the domain III apex. Blind docking consistently indicated a strong preference of ligand binding in domain III, away from the active site. Molecular dynamics simulations indicated that ligands docked both to the active site and in the dimerization region at the apex, formed relatively stable interactions. Overall, our findings do not obviate the superior potency with respect to inhibition of protease activity of covalently-linked inhibitors such as α-ketoamide 13b in the Mpro active site. Nevertheless, along with those from others, our findings highlight the importance of further characterisation of the Mpro active site and any potential allosteric sites.
Collapse
Affiliation(s)
- Julia Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; School of Science, College of Science, Engineering & Health, RMIT University, VIC 3001, Australia
| | - Chris Karagiannis
- School of Science, College of Science, Engineering & Health, RMIT University, VIC 3001, Australia; School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; School of Science, College of Science, Engineering & Health, RMIT University, VIC 3001, Australia
| | - Kevion K Darmawan
- School of Science, College of Science, Engineering & Health, RMIT University, VIC 3001, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Andrew Hung
- School of Science, College of Science, Engineering & Health, RMIT University, VIC 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
11
|
Gray JL, von Delft F, Brennan PE. Targeting the Small GTPase Superfamily through Their Regulatory Proteins. Angew Chem Int Ed Engl 2020; 59:6342-6366. [PMID: 30869179 PMCID: PMC7204875 DOI: 10.1002/anie.201900585] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/11/2019] [Indexed: 12/11/2022]
Abstract
The Ras superfamily of small GTPases are guanine-nucleotide-dependent switches essential for numerous cellular processes. Mutations or dysregulation of these proteins are associated with many diseases, but unsuccessful attempts to target the small GTPases directly have resulted in them being classed as "undruggable". The GTP-dependent signaling of these proteins is controlled by their regulators; guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in the Rho and Rab subfamilies, guanine nucleotide dissociation inhibitors (GDIs). This review covers the recent small molecule and biologics strategies to target the small GTPases through their regulators. It seeks to critically re-evaluate recent chemical biology practice, such as the presence of PAINs motifs and the cell-based readout using compounds that are weakly potent or of unknown specificity. It highlights the vast scope of potential approaches for targeting the small GTPases in the future through their regulatory proteins.
Collapse
Affiliation(s)
- Janine L. Gray
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOld Road CampusOxfordOX3 7FZUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
| | - Frank von Delft
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
- Department of BiochemistryUniversity of JohannesburgAuckland Park2006South Africa
| | - Paul E. Brennan
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOld Road CampusOxfordOX3 7FZUK
- Alzheimer's Research (UK) Oxford Drug Discovery InstituteNuffield Department of MedicineUniversity of OxfordOxfordOX3 7FZUK
| |
Collapse
|
12
|
Zhao J, Cao Y, Zhang L. Exploring the computational methods for protein-ligand binding site prediction. Comput Struct Biotechnol J 2020; 18:417-426. [PMID: 32140203 PMCID: PMC7049599 DOI: 10.1016/j.csbj.2020.02.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/23/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
Proteins participate in various essential processes in vivo via interactions with other molecules. Identifying the residues participating in these interactions not only provides biological insights for protein function studies but also has great significance for drug discoveries. Therefore, predicting protein-ligand binding sites has long been under intense research in the fields of bioinformatics and computer aided drug discovery. In this review, we first introduce the research background of predicting protein-ligand binding sites and then classify the methods into four categories, namely, 3D structure-based, template similarity-based, traditional machine learning-based and deep learning-based methods. We describe representative algorithms in each category and elaborate on machine learning and deep learning-based prediction methods in more detail. Finally, we discuss the trends and challenges of the current research such as molecular dynamics simulation based cryptic binding sites prediction, and highlight prospective directions for the near future.
Collapse
Affiliation(s)
- Jingtian Zhao
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Le Zhang
- College of Computer Science, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
McCarthy M, Pagba CV, Prakash P, Naji AK, van der Hoeven D, Liang H, Gupta AK, Zhou Y, Cho KJ, Hancock JF, Gorfe AA. Discovery of High-Affinity Noncovalent Allosteric KRAS Inhibitors That Disrupt Effector Binding. ACS OMEGA 2019; 4:2921-2930. [PMID: 30842983 PMCID: PMC6396121 DOI: 10.1021/acsomega.8b03308] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 05/06/2023]
Abstract
Approximately 15% of all human tumors harbor mutant KRAS, a membrane-associated small GTPase and notorious oncogene. Mutations that render KRAS constitutively active will lead to uncontrolled cell growth and cancer. However, despite aggressive efforts in recent years, there are no drugs on the market that directly target KRAS and inhibit its aberrant functions. In the current work, we combined structure-based design with a battery of cell and biophysical assays to discover a novel pyrazolopyrimidine-based allosteric KRAS inhibitor that binds to activated KRAS with sub-micromolar affinity and disrupts effector binding, thereby inhibiting KRAS signaling and cancer cell growth. These results show that pyrazolopyrimidine-based compounds may represent a first-in-class allosteric noncovalent inhibitors of KRAS. Moreover, by studying two of its analogues, we identified key chemical features of the compound that interact with a set of specific residues at the switch regions of KRAS and play critical roles for its high-affinity binding and unique mode of action, thus providing a blueprint for future optimization efforts.
Collapse
Affiliation(s)
- Michael
J. McCarthy
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
- Biochemistry
and Cell Biology Program, UTHealth MD Anderson
Cancer Center Graduate School of Biomedical Sciences, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Cynthia V. Pagba
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Priyanka Prakash
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Ali K. Naji
- Department
of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Cambridge Street, Houston, Texas 7500, United States
| | - Dharini van der Hoeven
- Department
of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Cambridge Street, Houston, Texas 7500, United States
| | - Hong Liang
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Amit K. Gupta
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Yong Zhou
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
- Biochemistry
and Cell Biology Program, UTHealth MD Anderson
Cancer Center Graduate School of Biomedical Sciences, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Kwang-Jin Cho
- Department
of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, United States
| | - John F. Hancock
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
- Biochemistry
and Cell Biology Program, UTHealth MD Anderson
Cancer Center Graduate School of Biomedical Sciences, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Alemayehu A. Gorfe
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
- Biochemistry
and Cell Biology Program, UTHealth MD Anderson
Cancer Center Graduate School of Biomedical Sciences, 6431 Fannin Street, Houston, Texas 77030, United States
- E-mail: (A.A.G.)
| |
Collapse
|
14
|
Phua SX, Chan KF, Su CTT, Poh JJ, Gan SKE. Perspective: The promises of a holistic view of proteins-impact on antibody engineering and drug discovery. Biosci Rep 2019; 39:BSR20181958. [PMID: 30630879 PMCID: PMC6398899 DOI: 10.1042/bsr20181958] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022] Open
Abstract
The reductionist approach is prevalent in biomedical science. However, increasing evidence now shows that biological systems cannot be simply considered as the sum of its parts. With experimental, technological, and computational advances, we can now do more than view parts in isolation, thus we propose that an increasing holistic view (where a protein is investigated as much as a whole as possible) is now timely. To further advocate this, we review and discuss several studies and applications involving allostery, where distant protein regions can cross-talk to influence functionality. Therefore, we believe that an increasing big picture approach holds great promise, particularly in the areas of antibody engineering and drug discovery in rational drug design.
Collapse
Affiliation(s)
- Ser-Xian Phua
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kwok-Fong Chan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chinh Tran-To Su
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jun-Jie Poh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
- APD SKEG Pte Ltd, Singapore
| | - Samuel Ken-En Gan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
- APD SKEG Pte Ltd, Singapore
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
15
|
Maximova T, Plaku E, Shehu A. Structure-Guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1783-1796. [PMID: 27411226 DOI: 10.1109/tcbb.2016.2586044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins are macromolecules in perpetual motion, switching between structural states to modulate their function. A detailed characterization of the precise yet complex relationship between protein structure, dynamics, and function requires elucidating transitions between functionally-relevant states. Doing so challenges both wet and dry laboratories, as protein dynamics involves disparate temporal scales. In this paper, we present a novel, sampling-based algorithm to compute transition paths. The algorithm exploits two main ideas. First, it leverages known structures to initialize its search and define a reduced conformation space for rapid sampling. This is key to address the insufficient sampling issue suffered by sampling-based algorithms. Second, the algorithm embeds samples in a nearest-neighbor graph where transition paths can be efficiently computed via queries. The algorithm adapts the probabilistic roadmap framework that is popular in robot motion planning. In addition to efficiently computing lowest-cost paths between any given structures, the algorithm allows investigating hypotheses regarding the order of experimentally-known structures in a transition event. This novel contribution is likely to open up new venues of research. Detailed analysis is presented on multiple-basin proteins of relevance to human disease. Multiscaling and the AMBER ff14SB force field are used to obtain energetically-credible paths at atomistic detail.
Collapse
|
16
|
Chan HCS, Wang J, Palczewski K, Filipek S, Vogel H, Liu ZJ, Yuan S. Exploring a new ligand binding site of G protein-coupled receptors. Chem Sci 2018; 9:6480-6489. [PMID: 30310578 PMCID: PMC6115637 DOI: 10.1039/c8sc01680a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
Identifying a target ligand binding site is an important step for structure-based rational drug design as shown here for G protein-coupled receptors (GPCRs), which are among the most popular drug targets. We applied long-time scale molecular dynamics simulations, coupled with mutagenesis studies, to two prototypical GPCRs, the M3 and M4 muscarinic acetylcholine receptors. Our results indicate that unlike synthetic antagonists, which bind to the classic orthosteric site, the endogenous agonist acetylcholine is able to diffuse into a much deeper binding pocket. We also discovered that the most recently resolved crystal structure of the LTB4 receptor comprised a bound inverse agonist, which extended its benzamidine moiety to the same binding pocket discovered in this work. Analysis on all resolved GPCR crystal structures indicated that this new pocket could exist in most receptors. Our findings provide new opportunities for GPCR drug discovery.
Collapse
Affiliation(s)
| | - Jingjing Wang
- iHuman Institute , ShanghaiTech University , China .
| | | | - Slawomir Filipek
- Faculty of Chemistry , Biological and Chemical Research Centre , University of Warsaw , Poland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Switzerland . ;
| | - Zhi-Jie Liu
- iHuman Institute , ShanghaiTech University , China .
| | - Shuguang Yuan
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Switzerland . ;
| |
Collapse
|
17
|
Kumar AP, Lukman S. Allosteric binding sites in Rab11 for potential drug candidates. PLoS One 2018; 13:e0198632. [PMID: 29874286 PMCID: PMC5991966 DOI: 10.1371/journal.pone.0198632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Abstract
An orthosteric site is commonly viewed as the primary, functionally binding pocket on a receptor. Signal molecules, endogenous agonists, and substrates are recognized by and bind to the orthosteric site of a specific target, resulting in a biological effect. A malfunctioning active site on a crucial receptor has been confirmed as the culprit that causes many metabolic disturbances, neurologic disorders, and genetic diseases. A competitive inhibitor that has a stronger binding affinity can outcompete an orthosteric ligand. An allosteric site, which is nonoverlapping and topographically distinct from the active pocket, can emerge as a potential regulatory site on the protein surface. An allosteric modulator interacts with a specific binding site, affecting the atoms of nearby residues, thus eliciting a series of conformational changes in the residues at the active site through propagation pathways. Allosteric regulation can potentiate or inhibit function instead of blocking it, and this is a promising strategy for drug design. In this chapter, we describe the tools and protocols for allosteric site analysis and allosteric ligand design.
Collapse
Affiliation(s)
- Kun Song
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Wang S, Liu Q, Li X, Zhao X, Qiu L, Lin J. Possible binding sites and interactions of propanidid and AZD3043 within the γ-aminobutyric acid type A receptor (GABAAR). J Biomol Struct Dyn 2017; 36:3926-3937. [DOI: 10.1080/07391102.2017.1403959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shanshan Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R China
- Key Laboratory of Nuclear Medicine, Ministry of Health & Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P.R. China
| | - Qingzhu Liu
- Key Laboratory of Nuclear Medicine, Ministry of Health & Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P.R. China
| | - Xi Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R China
- Key Laboratory of Nuclear Medicine, Ministry of Health & Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P.R. China
| | - Xueyu Zhao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R China
- Key Laboratory of Nuclear Medicine, Ministry of Health & Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P.R. China
| | - Ling Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R China
- Key Laboratory of Nuclear Medicine, Ministry of Health & Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P.R. China
| | - Jianguo Lin
- Key Laboratory of Nuclear Medicine, Ministry of Health & Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P.R. China
| |
Collapse
|
20
|
Nussinov R, Jang H, Tsai CJ, Liao TJ, Li S, Fushman D, Zhang J. Intrinsic protein disorder in oncogenic KRAS signaling. Cell Mol Life Sci 2017; 74:3245-3261. [PMID: 28597297 PMCID: PMC11107717 DOI: 10.1007/s00018-017-2564-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Abstract
How Ras, and in particular its most abundant oncogenic isoform K-Ras4B, is activated and signals in proliferating cells, poses some of the most challenging questions in cancer cell biology. In this paper, we ask how intrinsically disordered regions in K-Ras4B and its effectors help promote proliferative signaling. Conformational disorder allows spanning long distances, supports hinge motions, promotes anchoring in membranes, permits segments to fulfil multiple roles, and broadly is crucial for activation mechanisms and intensified oncogenic signaling. Here, we provide an overview illustrating some of the key mechanisms through which conformational disorder can promote oncogenesis, with K-Ras4B signaling serving as an example. We discuss (1) GTP-bound KRas4B activation through membrane attachment; (2) how farnesylation and palmitoylation can promote isoform functional specificity; (3) calmodulin binding and PI3K activation; (4) how Ras activates its RASSF5 cofactor, thereby stimulating signaling of the Hippo pathway and repressing proliferation; and (5) how intrinsically disordered segments in Raf help its attachment to the membrane and activation. Collectively, we provide the first inclusive review of the roles of intrinsic protein disorder in oncogenic Ras-driven signaling. We believe that a broad picture helps to grasp and formulate key mechanisms in Ras cancer biology and assists in therapeutic intervention.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Tsung-Jen Liao
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Shuai Li
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| |
Collapse
|
21
|
Lu S, Jang H, Gu S, Zhang J, Nussinov R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 2016; 45:4929-52. [PMID: 27396271 PMCID: PMC5021603 DOI: 10.1039/c5cs00911a] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Shuo Gu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|