1
|
Li N, Wang J, Feng G, Liu Y, Shi Y, Wang Y, Chen L. Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies. Regen Biomater 2024; 11:rbae078. [PMID: 39055303 PMCID: PMC11272181 DOI: 10.1093/rb/rbae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
The intricate nature of oral-maxillofacial structure and function, coupled with the dynamic oral bacterial environment, presents formidable obstacles in addressing the repair and regeneration of oral-maxillofacial bone defects. Numerous characteristics should be noticed in oral-maxillofacial bone repair, such as irregular morphology of bone defects, homeostasis between hosts and microorganisms in the oral cavity and complex periodontal structures that facilitate epithelial ingrowth. Therefore, oral-maxillofacial bone repair necessitates restoration materials that adhere to stringent and specific demands. This review starts with exploring these particular requirements by introducing the particular characteristics of oral-maxillofacial bones and then summarizes the classifications of current bone repair materials in respect of composition and structure. Additionally, we discuss the modifications in current bone repair materials including improving mechanical properties, optimizing surface topography and pore structure and adding bioactive components such as elements, compounds, cells and their derivatives. Ultimately, we organize a range of potential optimization strategies and future perspectives for enhancing oral-maxillofacial bone repair materials, including physical environment manipulation, oral microbial homeostasis modulation, osteo-immune regulation, smart stimuli-responsive strategies and multifaceted approach for poly-pathic treatment, in the hope of providing some insights for researchers in this field. In summary, this review analyzes the complex demands of oral-maxillofacial bone repair, especially for periodontal and alveolar bone, concludes multifaceted strategies for corresponding biomaterials and aims to inspire future research in the pursuit of more effective treatment outcomes.
Collapse
Affiliation(s)
- Nayun Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqing Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Huang D, Liang J, Yang J, Yang C, Wang X, Dai T, Steinberg T, Li C, Wang F. Current Status of Tissue Regenerative Engineering for the Treatment of Uterine Infertility. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:558-573. [PMID: 37335062 DOI: 10.1089/ten.teb.2022.0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
With the recent developments in tissue engineering, scientists have attempted to establish seed cells from different sources, create cell sheets through various technologies, implant them on scaffolds with various spatial structures, or load scaffolds with cytokines. These research results are very optimistic, bringing hope to the treatment of patients with uterine infertility. In this article, we reviewed articles related to the treatment of uterine infertility from the aspects of experimental treatment strategy, seed cells, scaffold application, and repair criteria so as to provide a basis for future research.
Collapse
Affiliation(s)
- Di Huang
- Shandong First Medical University, Jinan, China
| | - Junhui Liang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Yang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Chunrun Yang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Ultrasonography, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianyu Dai
- Shandong First Medical University, Jinan, China
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Wang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
3
|
Özlem Özden Akkaya, Nawaz S, Dikmen T, Erdoğan M. Determining the Notch1 Expression in Chondrogenically Differentiated Rat Amniotic Fluid Stem Cells in Alginate Beads Using Conditioned Media from Chondrocytes Culture. BIOL BULL+ 2022. [DOI: 10.1134/s106235902215002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Giannetti A, Pantalone A, Antonucci I, Verna S, Di Gregorio P, Stuppia L, Calvisi V, Buda R, Salini V. The Role of Platelet-Rich Plasma on the Chondrogenic and Osteogenic Differentiation of Human Amniotic-Fluid-Derived Stem Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15786. [PMID: 36497861 PMCID: PMC9738099 DOI: 10.3390/ijerph192315786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Amniotic fluid represents a new and promising source of engraftable stem cells. The purpose of this study was to investigate the in vitro effects of platelet-rich plasma (PRP) on amniotic-fluid-derived stem cells (AFSCs) on chondrogenic or osteogenic differentiation potential. Amniotic fluid samples were obtained from women undergoing amniocentesis for prenatal diagnosis at 16-18 weeks of pregnancy. Undifferentiated human AFSCs were cocultured with PRP for 14 days. The study includes two protocols investigating the effects of activated PRP using two different methods: via freeze-thaw cycles and via the addition of calcium gluconate. On the 14th day of culturing, the differentiation potential of the cocultured AFSCs was then compared with undifferentiated AFSCs. Staining with alcian blue solution (ABS) and alizarine red solution (ARS) was performed, and chondrogenic- and osteogenic-associated genes markers were investigated. ABS demonstrated enhanced glycosaminoglycan expression. Cocultured cells expressed chondrocyte-associated genes, determined by real-time polymerase chain reaction (RT-PCR), including type I collagen, type II collagen, COMP, and aggrecan. In regard to the osteogenic markers, osteopontin and bone sialoprotein, there were no changes. In particular, the activation of PRP using the freeze-thaw cycle protocol showed a higher expression of the chondrogenic markers. Our preliminary in vitro results showed that PRP has good potential in the chondrogenic differentiation of AFSCs.
Collapse
Affiliation(s)
- Alessio Giannetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrea Pantalone
- Clinic of Orthopaedics and Traumatology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center of Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Sandra Verna
- Immunohematology and Transfusional Medicine Service, “SS. Annunziata” Hospital, 66100 Chieti, Italy
| | - Patrizia Di Gregorio
- Immunohematology and Transfusional Medicine Service, “SS. Annunziata” Hospital, 66100 Chieti, Italy
| | - Liborio Stuppia
- Center of Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vittorio Calvisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Roberto Buda
- Clinic of Orthopaedics and Traumatology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo Salini
- Department of Orthopaedics and Traumatology, San Raffaele Hospital, 20132 Milan, Italy
| |
Collapse
|
5
|
Solaiman A, Mehanna RA, Meheissen GA, Elatrebi S, Said R, Elsokkary NH. Potential effect of amniotic fluid-derived stem cells on hyperoxia-induced pulmonary alveolar injury. Stem Cell Res Ther 2022; 13:145. [PMID: 35379329 PMCID: PMC8978174 DOI: 10.1186/s13287-022-02821-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/20/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND With the widespread of Coronavirus Disease 2019 pandemic, in spite of the newly emerging vaccines, mutated strains remain a great obstacle to supportive and preventive measures. Coronavirus 19 survivors continue to face great danger of contacting the disease again. As long as no specific treatment has yet to be approved, a great percentage of patients experience real complications, including among others, lung fibrosis. High oxygen inhalation especially for prolonged periods is per se destructive to the lungs. Nevertheless, oxygen remains the first line support for such patients. In the present study we aimed at investigating the role of amniotic fluid-mesenchymal stem cells in preventing versus treating the hyperoxia-induced lung fibrosis in rats. METHODS The study was conducted on adult albino rats; 5 pregnant female rats were used as amniotic fluid donors, and 64 male rats were randomly divided into two groups: Control group; where 10 rats were kept in normal atmospheric air then sacrificed after 2 months, and hyperoxia-induced lung fibrosis group, where 54 rats were exposed to hyperoxia (100% oxygen for 6 h/day) in air-tight glass chambers for 1 month, then randomly divided into the following 5 subgroups: Hyperoxia group, cell-free media-treated group, stem cells-prophylactic group, stem cells-treated group and untreated group. Isolation, culture and proliferation of stem cells were done till passage 3. Pulmonary function tests, histological examination of lung tissue under light and electron microscopes, biochemical assessment of oxidative stress, IL-6 and Rho-A levels, and statistical analysis of data were performed. F-test (ANOVA) was used for normally distributed quantitative variables, to compare between more than two groups, and Post Hoc test (Tukey) for pairwise comparisons. RESULTS Labelled amniotic fluid-mesenchymal stem cells homed to lung tissue. Stem cells administration in the stem cells-prophylactic group succeeded to maintain pulmonary functions near the normal values with no significant difference between their values and those of the control group. Moreover, histological examination of lung tissues showed that stem cells-prophylactic group were completely protected while stem cells-treated group still showed various degrees of tissue injury, namely; thickened interalveolar septa, atelectasis and interstitial pneumonia. Biochemical studies after stem cells injection also showed decreased levels of RhoA and IL-6 in the prophylactic group and to a lesser extent in the treated group, in addition to increased total antioxidant capacity and decreased malondialdehyde in the stem cells-injected groups. CONCLUSIONS Amniotic fluid-mesenchymal stem cells showed promising protective and therapeutic results against hyperoxia-induced lung fibrosis as evaluated physiologically, histologically and biochemically.
Collapse
Affiliation(s)
- Amany Solaiman
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
- Center of Excellence for Research in Regenerative Medicine and Its Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ghada A Meheissen
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt.
| | - Soha Elatrebi
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| | - Rasha Said
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| | - Nahed H Elsokkary
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| |
Collapse
|
6
|
Feasibility of autologous plasma gel for tonsil-derived stem cell therapeutics in hypoparathyroidism. Sci Rep 2018; 8:11896. [PMID: 30093637 PMCID: PMC6085304 DOI: 10.1038/s41598-018-30454-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 07/30/2018] [Indexed: 12/30/2022] Open
Abstract
Hypoparathyroidism is a deficiency of the parathyroid hormone (PTH) in the body. We previously reported the possibility of treating it using tonsil-derived mesenchymal stem cells (TMSCs) differentiated into PTH-releasing cells. The purpose of this study was to evaluate the feasibility of using autologous plasma gel as scaffold material in treatment of hypoparathyroidism with TMSC. We obtained plasma by venous sampling of autologous blood and centrifuged and fabricated the plasma gel using a sinusoidal pattern heating machine. After we created the hypoparathyroidism animal model, we administered undifferentiated TMSCs and TMSCs differentiated into parathyroid cells at each rat dorsum by intramuscular injection with and without the plasma gel. In the plasma gel groups, intact PTH was detected from on day 21 after TMSC injection; we did not detect intact PTH in the groups that were only transplanted with TMSCs during the entire experimental period. Serum calcium was higher and phosphorous was lower in the TMSC with plasma gel groups than in the groups with TMSCs alone. We detected PTH and chromogranin A in the TMSC-plasma gel-transplanted areas on immunohistochemistry and immunofluorescence stain. Plasma gel can be considered as a cell-delivery scaffold for treating hypoparathyroidism with tonsil-derived mesenchymal stem cells.
Collapse
|