1
|
Huang J, Zhen W, Ma X, Ge S, Ma L. MiR-301b-3p targets and regulates EBF3 to impact the stem-like phenotype of breast cancer cells through glycolysis. J Clin Biochem Nutr 2025; 76:25-34. [PMID: 39896160 PMCID: PMC11782780 DOI: 10.3164/jcbn.23-131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/18/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Cancer stem cells are essential for the development of tumors, their recurrence, metastasis, and resistance to treatment. Previous studies have shown that the silencing of EBF3 promotes the progression of malignant tumors, but its impact on the stem-like phenotype of tumor cells remains unexplored. Therefore, this work aims to investigate the influence of EBF3 on the stem-like phenotype of breast cancer (BC) cells and its underlying molecular mechanisms. METHODS Bioinformatics analysis was utilized to predict EBF3 and miR-301b-3p expression and their binding sites in BC tissues. qRT-PCR was conducted to assess EBF3 and miR-301b-3p expression in BC cells. Cell viability was assessed using CCK-8 assay, while sphere-forming ability was assayed by sphere formation experiments. Western blot analysis was employed to assess the expression of stem cell-related markers and proteins associated with the glycolysis metabolic pathway. ECAR experiments and analysis of glycolysis metabolite production were performed to evaluate cellular glycolysis capacity. Dual-luciferase reporter assays and RIP were utilized to validate the binding relationship between EBF3 and miR-301b-3p. RESULTS EBF3 was downregulated in BC tissues and cells, and overexpression of EBF3 repressed the glycolysis capacity of BC cells, thereby suppressing stem-like phenotype. Furthermore, miR-301b-3p was identified as a direct target of EBF3, and its expression was increased in BC. Cell experiments revealed that miR-301b-3p suppressed EBF3 expression, thereby promoting the glycolysis capacity and stem-like phenotype of BC cells. CONCLUSION miR-301b-3p enhanced glycolysis and promoted the stem-like phenotype of BC cells by targeting EBF3. These findings can offer new therapeutic approaches for BC.
Collapse
Affiliation(s)
- Jiankang Huang
- Department of Thyroid and Breast Surgery, Anhui No.2 Provincial People’s Hospital, 1868 Dangshan Road, North 2nd Ring Road, Yaohai District, Hefei City, Anhui Province, 230000, China
| | - Weidong Zhen
- Department of Thyroid and Breast Surgery, Anhui No.2 Provincial People’s Hospital, 1868 Dangshan Road, North 2nd Ring Road, Yaohai District, Hefei City, Anhui Province, 230000, China
| | - Xiaokai Ma
- Department of Thyroid and Breast Surgery, Anhui No.2 Provincial People’s Hospital, 1868 Dangshan Road, North 2nd Ring Road, Yaohai District, Hefei City, Anhui Province, 230000, China
| | - Suxia Ge
- Department of Thyroid and Breast Surgery, Anhui No.2 Provincial People’s Hospital, 1868 Dangshan Road, North 2nd Ring Road, Yaohai District, Hefei City, Anhui Province, 230000, China
| | - Ling Ma
- Department of Gynecology, Anhui No.2 Provincial People’s Hospital, 1868 Dangshan Road, North 2nd Ring Road, Yaohai District, Hefei City, Anhui Province, 230000, China
| |
Collapse
|
2
|
Jin W, Liu J, Yang T, Feng Z, Yang J, Cao L, Wu C, Zuo Y, Yu L. Transcriptome Analyses Reveal the Important miRNAs Involved in Immune Response of Gastric Cancer. IET Syst Biol 2025; 19:e70014. [PMID: 40186852 PMCID: PMC11972004 DOI: 10.1049/syb2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/12/2024] [Accepted: 03/23/2025] [Indexed: 04/07/2025] Open
Abstract
MicroRNAs (miRNAs) are crucial factors in gene regulation, and their dysregulation plays important roles in the immunity of gastric cancer (GC). However, finding specific and effective miRNA markers is still a great challenge for GC immunotherapy. In this study, we computed and analysed miRNA-seq, RNA-seq and clinical data of GC patients from the TCGA database. With the comparison of tumour and normal tissues in GC, we identified 2056 upregulated and 2311 downregulated protein-coding genes. Based on the miRNet database, more than 2600 miRNAs interact with these genes. Several key miRNAs, including hsa-mir-34a, hsa-mir-182 and hsa-mir-23b, were identified to potentially play important regulatory roles in the expression of most upregulated and downregulated genes in GC. Based on bioinformation approaches, the expressions of hsa-mir-34a and hsa-mir-182 were closely linked to the tumour stage, and high expression of hsa-mir-23b was correlated with poor survival in GC. Moreover, these three miRNAs are involved in immune cell infiltration (such as activated memory CD4 T cells and resting mast cells), particularly hsa-mir-182 and hsa-mir-23b. GSEA suggested that the changes in their expression may possibly activate/inhibit immune-related signal pathways, such as chemokine signalling pathway and CXCR4 pathway. These results will provide possible miRNA markers or targets for combined immunotherapy of GC.
Collapse
Affiliation(s)
- Wen Jin
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Jianli Liu
- School of Water Resource and Environment EngineeringChina University of GeosciencesBeijingChina
| | - Tingyu Yang
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Zongqi Feng
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Jie Yang
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Lei Cao
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Chengyan Wu
- Baotou Teacher's CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Yongchun Zuo
- College of Life SciencesInner Mongolia UniversityHohhotChina
- Digital CollegeInner Mongolia Intelligent Union Big Data AcademyHohhotChina
- Inner Mongolia International Mongolian HospitalHohhotChina
| | - Lan Yu
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
- Department of Endocrine and Metabolic DiseasesInner Mongolia People's HospitalHohhotChina
| |
Collapse
|
3
|
Tang Y, Fahira A, Lin S, Shao Y, Huang Z. Shared and specific competing endogenous RNAs network mining in four digestive system tumors. Comput Struct Biotechnol J 2024; 23:4271-4287. [PMID: 39669749 PMCID: PMC11635987 DOI: 10.1016/j.csbj.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 11/02/2024] [Indexed: 12/14/2024] Open
Abstract
Background Digestive system malignancies, including esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), liver hepatocellular carcinoma (LIHC), and colon adenocarcinoma (COAD), pose significant global health challenges. Identifying shared and distinct regulatory mechanisms across these cancers can lead to improved therapies. This study aims to construct and compare competing endogenous RNA (ceRNA) networks across ESCA, STAD, LIHC, and COAD to identify RNA biomarkers that could serve as precision therapeutic targets to enhance clinical outcomes and advance personalized cancer care. Methods Clinical and transcriptomic data from The Cancer Genome Atlas (TCGA) were analyzed to predict differentially expressed RNAs using the edgeR package. The ceRNA networks were constructed using the miRcode and ENCORI databases. Functional enrichment analysis and prognostic RNA screening were performed with ConsensusPathDB and univariate Cox regression analysis. Results we identified 6, 88, 55, and 41 RNA biomarkers in ESCA, STAD, LIHC, and COAD, respectively. Network analysis revealed shared and specific elements, with shared nodes enriched in cell cycle and mitotic processes. Several biomarkers, including HMGB3 and RGS16 (ESCA), COL4A1 and COL6A3 (STAD), CDCA5 and CDCA8 (LIHC), and LIMK1 and OSBPL3 (COAD), were consistent with prior studies, while novel biomarkers, such as C3P1 (ESCA), P2RY6 (STAD), and N4BP2L1 and PPP1R3B (LIHC), were discovered. Based on RNA correlation analysis, 1, 23, and 2 potential ceRNA regulatory axes were identified in STAD (PVT1/miR-490-3p/HMGA2), LIHC (DLX6-AS1/miR-139-5p/TOP2A, etc.), and COAD (STRCP1 & LINC00488/miR-142-3p/GAB1), respectively. Conclusions This study advances the understanding of ceRNA networks in digestive cancers, highlighting RNA biomarkers with potential as therapeutic targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Yulai Tang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710
| | - Aamir Fahira
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Siying Lin
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710
| | - Yiming Shao
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
4
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
5
|
Zhang Y, Liu F, Zheng J, Jiang K, Ai H, Liu L, Mao D. MAPRE3 as an epigenetic target of EZH2 restricts ovarian cancer proliferation in vitro and in vivo. Exp Cell Res 2024; 435:113913. [PMID: 38199479 DOI: 10.1016/j.yexcr.2024.113913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Ovarian cancer (OC) is a lethal gynecologic cancer and the common cause of death within women worldwide. The polycomb group protein enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase highly expressed in various tumors, including OC. However, the mechanistic basis of EZH2 oncogenic activity in OC remain incompletely understood. Bioinformatics analysis showed that the expression of MAPRE3 was lower in OC tissues than in normal tissues, and was positively correlated with the overall survival. MAPRE3 overexpression decreased cell growth, inducing cell cycle arrest and apoptosis in OC cells, whereas MAPRE3 silencing promoted proliferation and accelerated cell cycle progression of OC cells. The in vivo study validated that overexpression of MAPRE3 impeded tumor formation and growth of OC xenografts in nude mice. In addition, knockdown of EZH2 in OC cells downregulated H3K27me3 expression and increased MAPRE3 expression. Inhibiting EZH2 in OC cells reduced the enrichment of H3K27me3 on the promoter of MAPRE3. Furthermore, MAPRE3 silencing significantly reversed changes in the expression of cell cycle and apoptosis-related markers and cell growth mediated by EZH2 knockdown in OC cells. MAPRE3 functions as a suppressor of OC and is epigenetic repressed by EZH2, suggesting a potential therapeutic strategy for OC by targeting EZH2/MAPRE3 axis.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China; Liaoning Key Laboratory of Follicular Development and Reproductive Health, Jinzhou, Liaoning, China.
| | - Fanglin Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Jindan Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Keping Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Hao Ai
- Liaoning Key Laboratory of Follicular Development and Reproductive Health, Jinzhou, Liaoning, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Lili Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Dong Mao
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
6
|
Jing Z, Guo Z, Zhang C. Plasma-derived Exosomal miR-25-3p and miR-23b-3p as Predictors of Response to Chemoradiotherapy in Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241289520. [PMID: 39380461 PMCID: PMC11465297 DOI: 10.1177/15330338241289520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Exosomal miRNAs have emerged as promising biomarkers for cancer. However, little is known about the role of exosomal miRNAs in the response prediction of esophageal squamous cell carcinoma (ESCC) patients treated with chemoradiotherapy (CRT). METHODS In this prospective study, 40 ESCC patients treated by CRT were enrolled from January 2021 to June 2022. Exosomes were isolated from plasma through EXODUS platform. We used small RNA sequencing in 14 samples of ESCC patients (7 responders, 7 non-responders) and the selected exosomal miRNAs were further validated in the extended cohort of 40 ESCC patients by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS In the discovery phase, we identified five significantly differentially expressed exosomal miRNAs from miRNA sequencing data between the responder and non-responder patients. In the extended groups of responders (n = 27) and non-responders (n = 13), only miR-23b-3p (p = 0.035, AUC = 0.708) and miR-25-3p (p < 0.001, AUC = 0.932) were confirmed to have the predictive ability to distinguish non-responders from responders. The patients with low levels of miR-25-3p had a significantly shorter progression-free survival (PFS) than those with high levels (p = 0.035). Multivariate Cox regression analysis revealed that miR-25-3p may serve as an independent predictive biomarker of PFS in ESCC patients received CRT. CONCLUSION Exosomal miR-25-3p and miR-23b-3p serve as promising biomarkers for predicting the early effectiveness of CRT in locally advanced ESCC patients, whereas miR-25-3p is a novel prognostic marker for ESCC. However, further larger prospective studies are needed to confirm their utility for individualized treatment decision in ESCC.
Collapse
Affiliation(s)
- Zhao Jing
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Zhen Guo
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Chuanfeng Zhang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Olufunmilayo EO, Holsinger RMD. Roles of Non-Coding RNA in Alzheimer's Disease Pathophysiology. Int J Mol Sci 2023; 24:12498. [PMID: 37569871 PMCID: PMC10420049 DOI: 10.3390/ijms241512498] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is accompanied by deficits in memory and cognitive functions. The disease is pathologically characterised by the accumulation and aggregation of an extracellular peptide referred to as amyloid-β (Aβ) in the form of amyloid plaques and the intracellular aggregation of a hyperphosphorelated protein tau in the form of neurofibrillary tangles (NFTs) that cause neuroinflammation, synaptic dysfunction, and oxidative stress. The search for pathomechanisms leading to disease onset and progression has identified many key players that include genetic, epigenetic, behavioural, and environmental factors, which lend support to the fact that this is a multi-faceted disease where failure in various systems contributes to disease onset and progression. Although the vast majority of individuals present with the sporadic (non-genetic) form of the disease, dysfunctions in numerous protein-coding and non-coding genes have been implicated in mechanisms contributing to the disease. Recent studies have provided strong evidence for the association of non-coding RNAs (ncRNAs) with AD. In this review, we highlight the current findings on changes observed in circular RNA (circRNA), microRNA (miRNA), short interfering RNA (siRNA), piwi-interacting RNA (piRNA), and long non-coding RNA (lncRNA) in AD. Variations in these ncRNAs could potentially serve as biomarkers or therapeutic targets for the diagnosis and treatment of Alzheimer's disease. We also discuss the results of studies that have targeted these ncRNAs in cellular and animal models of AD with a view for translating these findings into therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 200212, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Zanon MF, Scapulatempo-Neto C, Gama RR, Marques MMC, Reis RM, Evangelista AF. Identification of MicroRNA Expression Profiles Related to the Aggressiveness of Salivary Gland Adenoid Cystic Carcinomas. Genes (Basel) 2023; 14:1220. [PMID: 37372400 DOI: 10.3390/genes14061220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) has been reported as the second most common carcinoma of the salivary glands. Few studies have associated miRNA expression with ACC aggressiveness. In this study, we evaluated the miRNA profile of formalin-fixed, paraffin-embedded (FFPE) samples of salivary gland ACC patients using the NanoString platform. We studied the miRNA expression levels associated with the solid growth pattern, the more aggressive histologic feature of ACCs, compared with the tubular and cribriform growth patterns. Moreover, the perineural invasion status, a common clinicopathological feature of the disease that is frequently associated with the clinical progression of ACC, was investigated. The miRNAs showing significant differences between the study groups were selected for target prediction and functional enrichment, which included associations with the disease according to dedicated databases. We observed decreased expression of miR-181d, miR-23b, miR-455, miR-154-5p, and miR-409 in the solid growth pattern compared with tubular and cribriform growth patterns. In contrast, miR-29c, miR-140, miR-195, miR-24, miR-143, and miR-21 were overexpressed in patients with perineural invasion. Several target genes of the miRNAs identified have been associated with molecular processes involved in cell proliferation, apoptosis, and tumor progression. Together, these findings allowed the characterization of miRNAs potentially associated with aggressiveness in salivary gland adenoid cystic carcinoma. Our results highlight important new miRNA expression profiles involved in ACC carcinogenesis that could be associated with the aggressive behavior of this tumor type.
Collapse
Affiliation(s)
- Maicon Fernando Zanon
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
| | | | - Ricardo Ribeiro Gama
- Department of Head and Neck Surgery, Barretos Cancer Hospital, Barretos 14784-400, Brazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Adriane Feijó Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
- Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro 21040-361, Brazil
| |
Collapse
|
9
|
Meng F, Zhang X, Wang Y, Lin J, Tang Y, Zhang G, Qiu B, Zeng X, Liu W, He X. Hsa_circ_0021727 (circ-CD44) promotes ESCC progression by targeting miR-23b-5p to activate the TAB1/NFκB pathway. Cell Death Dis 2023; 14:9. [PMID: 36609391 PMCID: PMC9822936 DOI: 10.1038/s41419-022-05541-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is characterized by high morbidity and mortality. Circular RNAs (circRNAs) play an important role in tumor progression. We discovered an aberrantly expressed circRNA (hsa_circ_0021727) in patients with ESCC. However, the mechanism of action of hsa_circ_0021727 in tumors is unclear. The present study aimed to investigate the biological role of hsa_circ_0021727 and its mechanism in ESCC progression. We screened for the expression of hsa_circ_0021727 in ESCC patients. Patients with ESCC with high expression of hsa_circ_0021727 had shorter survival than those with low expression. Hsa_circ_0021727 promoted the proliferation, invasion, and migration of ESCC cells. However, miR-23b-5p inhibited this ability of hsa_circ_0021727. MiR-23b-5p acts by targeting TAK1-binding protein 1 (TAB1). Upregulation of TAB1 can activate the nuclear factor kappa B (NFκB) pathway. Hsa_circ_0021727 promoted ESCC progression by activating TAB1/NFκB pathway by sponging miR-23b-5p. In addition, in vivo experiments also confirmed that hsa_circ_0021727 could promote the proliferation, invasion, and migration of ESCC cells. In short, hsa_circ_0021727 promotes ESCC progression by targeting miR-23b-5p to activate the TAB1/NFκB pathway. These findings might provide potential targets to treat ESCC.
Collapse
Affiliation(s)
- Fan Meng
- Digestive System Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaokang Zhang
- Jiangxi Provincial Branch of China Clinical Medical Research Center for Geriatric Diseases, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanting Wang
- Department of Respiratory and Critical Illness Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Lin
- Department of Respiratory and Critical Illness Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yulin Tang
- Department of Respiratory and Critical Illness Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guisheng Zhang
- Digestive System Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Binqiang Qiu
- Department of Respiratory and Critical Illness Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xingdu Zeng
- Department of Respiratory and Critical Illness Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weiyou Liu
- Jiangxi Provincial Branch of China Clinical Medical Research Center for Geriatric Diseases, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Respiratory and Critical Illness Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xin He
- Jiangxi Provincial Branch of China Clinical Medical Research Center for Geriatric Diseases, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
- Department of Respiratory and Critical Illness Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
10
|
Iacob R, Mandea M, Iacob S, Pietrosanu C, Paul D, Hainarosie R, Gheorghe C. Liquid Biopsy in Squamous Cell Carcinoma of the Esophagus and of the Head and Neck. Front Med (Lausanne) 2022; 9:827297. [PMID: 35572996 PMCID: PMC9098838 DOI: 10.3389/fmed.2022.827297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Squamous cell carcinomas of the esophagus (ESCC) and of the head and neck (HNSCC) are two neoplasms that share common risk factors and have the same embryological origin, but a very different prognosis, the 5-year survival of HNSCC being almost double (40–50%) compared to the 5-year survival of ESCC (20%). Current guidelines emphasize the importance of screening for ESCC in patients diagnosed with head and neck cancers. A liquid biopsy is a novel tool for diagnosis, prognostic stratification, and personalized therapy. Liquid biopsy biomarkers for these two malignancies could help both their early detection, facilitate residual disease identification, and provide prognosis information. The present systematic review of the literature was aimed at describing the liquid biopsy biomarkers present in these two malignancies, with an emphasis on potential clinical applications.
Collapse
Affiliation(s)
- Razvan Iacob
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Matei Mandea
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | - Speranta Iacob
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Catalina Pietrosanu
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Professor Doctor Dorin Hociota Institute of Phonoaudiology and Functional ENT Surgery, Bucharest, Romania
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Razvan Hainarosie
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Professor Doctor Dorin Hociota Institute of Phonoaudiology and Functional ENT Surgery, Bucharest, Romania
- *Correspondence: Razvan Hainarosie
| | - Cristian Gheorghe
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
11
|
Dong Z, Liao Z, He Y, Wu C, Meng Z, Qin B, Xu G, Li Z, Sun T, Wen Y, Li G. Advances in the Biological Functions and Mechanisms of miRNAs in the Development of Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221117386. [PMID: 35950243 PMCID: PMC9379803 DOI: 10.1177/15330338221117386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is one of the most common primary malignant bone tumors, mainly
occurring in children and adolescents, and is characterized by high morbidity
and poor prognosis. MicroRNAs, a class of noncoding RNAs consisting of 19 to 25
nucleotides, are involved in cell proliferation, invasion, metastasis, and
apoptosis to regulate the development and progression of osteosarcoma. Studies
have found that microRNAs are closely related to the diagnosis, treatment, and
prognosis of osteosarcoma patients and have an important role in improving drug
resistance in osteosarcoma. This paper reviews the role of microRNAs in the
pathogenesis of osteosarcoma and their clinical value, aiming to provide a new
research direction for diagnosing and treating osteosarcoma and achieving a
better prognosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zhipeng Liao
- The Second School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yonglin He
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Chengye Wu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zixiang Meng
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Baolong Qin
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Ge Xu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zeyang Li
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Tianxin Sun
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yuyan Wen
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Zhang Y, Zhao Y, Ao X, Yu W, Zhang L, Wang Y, Chang W. The Role of Non-coding RNAs in Alzheimer's Disease: From Regulated Mechanism to Therapeutic Targets and Diagnostic Biomarkers. Front Aging Neurosci 2021; 13:654978. [PMID: 34276336 PMCID: PMC8283767 DOI: 10.3389/fnagi.2021.654978] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/11/2021] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. AD is characterized by the production and aggregation of beta-amyloid (Aβ) peptides, hyperphosphorylated tau proteins that form neurofibrillary tangles (NFTs), and subsequent neuroinflammation, synaptic dysfunction, autophagy and oxidative stress. Non-coding RNAs (ncRNAs) can be used as potential therapeutic targets and biomarkers due to their vital regulatory roles in multiple biological processes involved in disease development. The involvement of ncRNAs in the pathogenesis of AD has been increasingly recognized. Here, we review the ncRNAs implicated in AD and elaborate on their main regulatory pathways, which might have contributions for discovering novel therapeutic targets and drugs for AD.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yanfang Zhao
- Institute of Biomedical Research, School for Life Science, Shandong University of Technology, Zibo, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Yan X, Zhang M, Li B, Ji X, Wu H, Zhang Q. RAI14 Regulated by circNFATC3/miR-23b-3p axis Facilitates Cell Growth and Invasion in Gastric Cancer. Cell Transplant 2021; 30:9636897211007055. [PMID: 33840258 PMCID: PMC8044574 DOI: 10.1177/09636897211007055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Circular RNAs (circRNAs) have been proved to act crucial roles in multiple malignancies including gastric cancer (GC). Retinoic acid induced 14 (RAI14) acts as an oncogene in human cancers, but the underlying mechanisms by which RAI14 is regulated by circRNA/miRNA axis remain elusive. The clinical value of RAI14, miR-23b-3p and circNFATC3 was estimated by The Cancer Genome Atlas and fluorescence in situ hybridization. The interplay between miR-23b-3p and RAI14 or circNFATC3 was determined by qRT-PCR, Western blot, luciferase gene report and RIP assays. Biological function assays and a subcutaneous xenograft model were executed to unveil the role of circNFATC3/miR-23b-3p/RAI14 axis in GC cells. As a consequence, upregulation of RAI14 and circNFATC3 or downregulation of miR-23b-3p was associated with poor prognosis in patients with GC. Restored miR-23b-3p depressed cell proliferation, colony formation, and cell invasion by targeting RAI14, whereas RAI14 facilitated cell progression and reversed the anti-tumor effects of miR-23b-3p in GC cells. Then, circNFATC3 had a co-localization with miR-23b-3p in the cytoplasm in GC tissue cells and could act as a sponge of miR-23b-3p in GC cell line. Silencing of circNFATC3 inhibited cell growth and in vivo tumorigenesis by upregulating miR-23b-3p and downregulating RAI14. In conclusion, our findings indicated that RAI14 facilitated cell growth and invasion and was regulated by circNFATC3/miR-23b-3p axis in GC.
Collapse
Affiliation(s)
- XinXin Yan
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Geriatric, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - MingZhi Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gastroenterology, The third affiliated hospital of Jinzhou Medical University, Jinzhou, China
| | - BingBing Li
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xia Ji
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - HongJin Wu
- Central Laboratory for Science and Technology, Longhua hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - QingYu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
14
|
Ge BH, Li GC. Long non-coding RNA SNHG17 promotes proliferation, migration and invasion of glioma cells by regulating the miR-23b-3p/ZHX1 axis. J Gene Med 2020; 22:e3247. [PMID: 32602607 DOI: 10.1002/jgm.3247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) small nucleolar RNA host gene 17 (SNHG17) is a carcinogenic lncRNA in diverse cancers. The expression pattern and mechanisms of SNHG17 in glioma still await verification. METHODS Paired glioma samples were enrolled. SNHG17, miR-23b-3p, and zinc-fingers and homeoboxes 1 (ZHX1) mRNA expression were examined by a quantitative real-time polymerase chain reaction (qRT-PCR). SNHG17 short hairpin RNA (shRNA) and miR-23b-3p mimics were transfected into LN229 and U251 cell lines to repress SNHG17 and up-regulate miR-23b-3p expression, respectively. Proliferation, migration and invasion of LN229 and U251 cells were probed by a cell counting kit-8 assay and a Transwell assay. Bioinformatics prediction, dual-luciferase reporter assay, RNA immunoprecipitation assay, qRT-PCR and western blotting were applied to determine the regulatory relationships among SNHG17, miR-23b-3p and ZHX1. RESULTS SNHG17 expression was markedly raised in glioma tissues, which was positively correlated with ZHX1 expression and negatively associated with the expression of miR-23b-3p. After transfection of SNHG17 shRNAs into glioma cells, the proliferation, migration and invasion of cancer cells was markedly restrained. miR-23b-3p mimics the function of SHNG17 knockdown. Furthermore, miR-23b-3p was shown to be negatively modulated by SNHG17, and ZHX1 was identified as a target of miR-23b-3p. CONCLUSIONS SNHG17 is a "competing endogenous RNA" with respect to modulating ZHX1 expression by adsorbing miR-23b-3p and thereby promoting glioma progression.
Collapse
Affiliation(s)
- Bei-Hai Ge
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| | - Guo-Cheng Li
- Department of Neurosurgery, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
15
|
Hu H, Tang J, Liu C, Cen Y. MiR-23b Promotes the Migration of Keratinocytes Through Downregulating TIMP3. J Surg Res 2020; 254:102-109. [PMID: 32422429 DOI: 10.1016/j.jss.2020.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/18/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Wound healing is a complex process aiming at repairing the damaged skin. MiR-23b has been reported to be upregulated during wound healing. In this study, we intended to explore the working mechanism of miR-23b during wound healing. METHODS Quantitative real-time polymerase chain reaction was performed to detect the enrichment of miR-23b and tissue inhibitor of metalloproteinase-3 (TIMP3) in HaCaT cells. Scratch wound assay was carried out to measure the migration of HaCaT cells. The target of miR-23b was predicted by microT-CDS software, and the combination was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay. The abundance of TIMP3 protein was detected by Western blot assay. RESULTS The abundance of miR-23b was positively related to the concentration and time of transforming growth factor β1 treatment in HaCaT cells. MiR-23b promoted the migration of keratinocytes. TIMP3 was a direct target of miR-23b and was negatively regulated by miR-23b. TIMP3 inhibited the migration of keratinocytes. MiR-23b accelerated the migration of keratinocytes by downregulating the abundance of TIMP3. CONCLUSIONS MiR-23b promoted the migration of keratinocytes partly through reducing the enrichment of TIMP3. MiR-23b might be a promising target for the treatment of wound healing-associated diseases.
Collapse
Affiliation(s)
- Hua Hu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Tang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Liu C, Li X, Hao Y, Wang F, Cheng Z, Geng H, Geng D. STAT1-induced upregulation of lncRNA KTN1-AS1 predicts poor prognosis and facilitates non-small cell lung cancer progression via miR-23b/DEPDC1 axis. Aging (Albany NY) 2020; 12:8680-8701. [PMID: 32396871 PMCID: PMC7244022 DOI: 10.18632/aging.103191] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/17/2020] [Indexed: 12/25/2022]
Abstract
Several of the thousands of long noncoding RNAs (lncRNAs) have been functionally characterized in various tumors. In this study, we aimed to explore the function and possible molecular mechanism of lncRNA KTN1 antisense RNA 1 (KTN1-AS1) involved in non-small cell lung cancer (NSCLC). We identified a novel NSCLC-related lncRNA, KTN1 antisense RNA 1 (KTN1-AS1) which was demonstrated to be distinctly highly expressed in NSCLC. KTN1-AS1 upregulation was induced by STAT1. Clinical study also suggested that higher levels of KTN1-AS1 were associated with advanced clinical progression and a shorter five-year overall survival. Functionally, loss-of-function assays with in vitro and in vivo experiments revealed that KTN1-AS1 promoted the proliferation, migration, invasion and EMT progress of NSCLC cells, and suppressed apoptosis. Mechanistic studies indicated that miR-23b was a direct target of KTN1-AS1, which functioned as a ceRNA to subsequently facilitate miR-23b’s target gene DEPDC1 expression in NSCLC cells. Rescue experiments confirmed that KTN1-AS1 overexpression could increase the colony formation and migration ability suppressed by miR-23b upregulation in NSCLC cells. Overall, our findings imply that STAT1-induced upregulation of KTN1-AS1 display tumor-promotive roles in NSCLC progression via regulating miR-23b/DEPDC1 axis, suggesting that KTN1-AS1 may be a novel biomarker and therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Changmin Liu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaoming Li
- Department of Hepatobiliary Surgery, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yanzhang Hao
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Feng Wang
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zhiwen Cheng
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Haitao Geng
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dianzhong Geng
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
17
|
Emerging Role of Non-Coding RNAs in Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2019; 21:ijms21010258. [PMID: 31905958 PMCID: PMC6982002 DOI: 10.3390/ijms21010258] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly prevalent tumor and is associated with ethnicity, genetics, and dietary intake. Non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) have been reported as functional regulatory molecules involved in the development of many human cancers, including ESCC. Recently, several ncRNAs have been detected as oncogenes or tumor suppressors in ESCC progression. These ncRNAs influence the expression of specific genes or their associated signaling pathways. Moreover, interactions of ncRNAs are evident in ESCC, as miRNAs regulate the expression of lncRNAs, and further, lncRNAs and circRNAs function as miRNA sponges to compete with the endogenous RNAs. Here, we discuss and summarize the findings of recent investigations into the role of ncRNAs (miRNAs, lncRNAs, and circRNAs) in the development and progression of ESCC and how their interactions regulate ESCC development.
Collapse
|
18
|
Wu B, Xing C, Tao J. Upregulation of microRNA-23b-3p induced by farnesoid X receptor regulates the proliferation and apoptosis of osteosarcoma cells. J Orthop Surg Res 2019; 14:398. [PMID: 31779647 PMCID: PMC6883581 DOI: 10.1186/s13018-019-1404-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The downstream targets of farnesoid X receptor (FXR) such as miRNAs have a potent effect on the progression of many types of cancer. We aim to study the effects of FXR on osteosarcoma (OS) development and the potential role of microRNA-23b-3p. METHODS The expressions of FXR and miR-23b-3p in normal osteoblasts and five osteosarcoma cell lines were measured. Their correlations were analyzed by Pearson's test and verified by the introduction of FXR agonist, GW4064. TargetScan predicted that cyclin G1 (CCNG1) was a target for miR-23b-3p. The transfection of FXR siRNA was performed to confirm the correlation between FXR and miR-23b-3p. We further transfected miR-23b-3p inhibitor into MG-63 cells, and the transfected cells were treated with 5 μM GW4064 for 48 h. Quantitative PCR (qPCR) and Western blot were performed for expression analysis. Cell proliferation, cell apoptosis rate, and cell cycle distribution were assessed by clone formation assay and flow cytometry. RESULTS Scatter plot showed a positive correlation between FXR and miR-23b-3p (Pearson's coefficient test R2 = 1.00, P = 0.0028). As CCNG1 is a target for miR-23b-3p, the treatment of GW4064 induced the downregulation of CCNG1 through upregulating miR-23b-3p. The inhibition of miR-23b-3p obviously promoted cell viability, proliferation, and cell cycle progression but reduced apoptosis rate of MG-63 cells; however, the treatment of GW4064 could partially reverse the effects of the inhibition of miR-23b-3p on OS cells. CONCLUSIONS Upregulated FXR by GW4064 can obviously suppress OS cell development, and the suppressive effects may rely on miR-23b-3p/CCNG1 pathway.
Collapse
Affiliation(s)
- Bin Wu
- Department of Thyroid Breast Surgery, Zhongshan Hospital Affiliated to Dalian University, Dalian, China
| | - Chengjuan Xing
- Department of Pathology, Second Hospital Affiliated to Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning Province, China
| | - Juan Tao
- Department of Pathology, Second Hospital Affiliated to Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning Province, China.
| |
Collapse
|
19
|
Zhang J. Effect of adriamycin combined with metformin on biological function of human tongue cancer SSC-15 cells. Oncol Lett 2019; 17:5674-5680. [PMID: 31186791 PMCID: PMC6507480 DOI: 10.3892/ol.2019.10237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/28/2019] [Indexed: 12/04/2022] Open
Abstract
The effect of adriamycin (ADM) combined with metformin (MET) on the biological function of human tongue cancer SSC-15 cells was investigated. SCC-15 cells (ATCC® CRL-1623) were cultured in vitro. The close concentration of the median lethal dose (LD50) of ADM was 0.05 mg/l and the LD50 of MET was 10 mmol/l after 48 h of intervention. They were used for drug combination experiments. Cells without drug treatment were used as the control group, cells treated with ADM alone, MET alone and their drug combination (ADM+MET) as the experimental groups. CCK-8 was used to detect the cell survival rate, and flow cytometry to detect the apoptosis rate in each group, Transwell chamber to detect the invasion ability in vitro of cells and scratch-healing experiment to observe the migration ability of the cells. The survival rate of tongue cancer SCC-15 cells gradually decreased with the increase in ADM and MET concentrations and in intervention time (P<0.05). The apoptosis rate in the ADM, MET and ADM+MET groups was significantly higher than that in the control group (P<0.05). The apoptosis rate in the ADM+MET group was higher than that in the ADM and MET groups (P<0.05). The invasion and migration ability of cells in the ADM and MET groups were higher than those in the ADM+MET group (P<0.05). The cell membrane number and the migration rate of cells in the ADM+MET group were significantly lower than those in the ADM and MET groups (P<0.05). Both MET and ADM inhibit the growth, invasion and migration of tongue cancer SSC-15 cells, and induce their apoptosis. Thus, ADM and MET in combination is more effective than ADM alone and MET alone in inhibiting the growth, invasion and migration of tongue cancer cells as well as in inducing their apoptosis.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Stomatology, Qianfoshan Hospital of Shandong Province, Jinan, Shandong 250014, P.R. China
| |
Collapse
|