1
|
Bhattacharyya M, Jariyal H, Srivastava A. Hyaluronic acid: More than a carrier, having an overpowering extracellular and intracellular impact on cancer. Carbohydr Polym 2023; 317:121081. [PMID: 37364954 DOI: 10.1016/j.carbpol.2023.121081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Hyaluronic acid (HA), also named hyaluronan, is an omnipresent component of the tissue microenvironment. It is extensively used to formulate targeted drug delivery systems for cancer. Although HA itself has pivotal influences in various cancers, its calibers are somewhat neglected when using it as delivering platform to treat cancer. In the last decade, multiple studies revealed roles of HA in cancer cell proliferation, invasion, apoptosis, and dormancy through pathways like mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK/ERK), P38, and nuclear factor kappa-light chain-enhancer of activated B cells (NFκB). A more fascinating fact is that the distinct molecular weight (MW) of HA exerts disparate effects on the same type of cancer. Its overwhelming use in cancer therapy and other therapeutic products make collective research on the sundry impact of it on various types of cancer, an essential aspect to be considered in all of these domains. Even the development of new therapies against cancer needed meticulous studies on HA because of its divergence of activity based on MW. This review will provide painstaking insight into the extracellular and intracellular bioactivity of HA, its modified forms, and its MW in cancers, which may improve the management of cancer.
Collapse
Affiliation(s)
- Medha Bhattacharyya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Device, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
2
|
Guo Q, Yang C, Gao F. The state of CD44 activation in cancer progression and therapeutic targeting. FEBS J 2022; 289:7970-7986. [PMID: 34478583 DOI: 10.1111/febs.16179] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/20/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
CD44, a non-kinase transmembrane glycoprotein, is ubiquitously expressed on various types of cells, especially cancer stem cells (CSCs), and has been implicated in cancer onset and aggressiveness. The major ligand for the CD44, hyaluronan (HA), binds to and interacts with CD44, which in turn triggers downstream signaling cascades, thereby promoting cellular behaviors such as proliferation, motility, invasiveness and chemoresistance. The CD44-HA interaction is cell-specific and strongly affected by the state of CD44 activation. Therefore, the binding of HA to CD44 is essential for the activation of CD44 during which the detailed regulatory mechanism needs to be clarified. Different CD44 activation states distribute in human carcinoma and normal tissue; however, whether CD44 activation is a critical requirement for tumor initiation, progression and notorious CSC properties remains to be clarified. A deeper understanding of the regulation of CD44 activation may facilitate the development of novel targeted drugs in the future. Here, we review the current findings concerning the states of CD44 activation on the cell surface, the underlying regulatory mechanisms of CD44 activation, the known role for CD44 activation in tumor progression and CSC hallmarks, as well as the potential of HA-coated nanoparticle for targeting activated CD44 for cancer therapy.
Collapse
Affiliation(s)
- Qian Guo
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
3
|
Xu W, Liu R, Dai Y, Hong S, Dong H, Wang H. The Role of p38γ in Cancer: From review to outlook. Int J Biol Sci 2021; 17:4036-4046. [PMID: 34671218 PMCID: PMC8495394 DOI: 10.7150/ijbs.63537] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/16/2021] [Indexed: 01/20/2023] Open
Abstract
p38γ is a member of the p38 Mitogen Activated Protein Kinases (p38 MAPKs). It contains four subtypes in mammalian cells encoded by different genes including p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). Recent studies revealed that p38γ may exhibit a crucial role in tumorigenesis and cancer aggressiveness. Despite the large number of published literatures, further researches are demanded to clarify its role in cancer development, the tissue-specific function and associated novel treatment strategies. In this article, we provide the latest view on the connection between p38γ and malignant tumors, highlighting the function of p38γ. The clinical value of p38γ is also discussed, helping the translation into the remarkable therapeutic strategy in tumor diseases.
Collapse
Affiliation(s)
- Wentao Xu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Rui Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Ying Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shaocheng Hong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huke Dong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
4
|
Tolg C, Messam BJA, McCarthy JB, Nelson AC, Turley EA. Hyaluronan Functions in Wound Repair That Are Captured to Fuel Breast Cancer Progression. Biomolecules 2021; 11:1551. [PMID: 34827550 PMCID: PMC8615562 DOI: 10.3390/biom11111551] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Signaling from an actively remodeling extracellular matrix (ECM) has emerged as a critical factor in regulating both the repair of tissue injuries and the progression of diseases such as metastatic cancer. Hyaluronan (HA) is a major component of the ECM that normally functions in tissue injury to sequentially promote then suppress inflammation and fibrosis, a duality in which is featured, and regulated in, wound repair. These essential response-to-injury functions of HA in the microenvironment are hijacked by tumor cells for invasion and avoidance of immune detection. In this review, we first discuss the numerous size-dependent functions of HA and emphasize the multifunctional nature of two of its receptors (CD44 and RHAMM) in regulating the signaling duality of HA in excisional wound healing. This is followed by a discussion of how HA metabolism is de-regulated in malignant progression and how targeting HA might be used to better manage breast cancer progression.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada;
| | - Britney Jodi-Ann Messam
- Department Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada;
| | - James Benjamin McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Andrew Cook Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Eva Ann Turley
- London Regional Cancer Program, Lawson Health Research Institute, Department Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
5
|
Chen X, Shi X, Liu Y, He Y, Du Y, Zhang G, Yang C, Gao F. Remodelling of the bone marrow microenvironment by stromal hyaluronan modulates the malignancy of breast cancer cells. Cell Commun Signal 2020; 18:89. [PMID: 32517712 PMCID: PMC7285718 DOI: 10.1186/s12964-020-00592-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background Hyaluronan (HA) is an abundant component of the bone marrow (BM) extracellular matrix. Here, we investigated the abnormal deposition of HA in the BM microenvironment and its remodelling in mediating the malignancy of breast cancer cells (BCCs). Methods BCCs were transplanted into nude mice by intracardiac injection. The BCCs were cocultured with BM-derived stromal HS5 cells. Then, the abnormal metabolism of HA and its correlation with the malignant growth and the intracellular signalling pathways of the BCCs were investigated. After knockdown/out of the HA receptor CD44 in cancer cells by shRNA and CRISPR/Cas9, the mechanism was investigated in vivo through intratibial inoculation and in vitro by coculture with HS5 cells. Results The malignancy of cancer cells was highly related to the degree of accumulation of HA in the BM. Further, stromal cell-derived HA, especially the mixed complex, significantly promoted the growth of BCCs and osteolysis by binding to the CD44 receptor. Additionally, the investigation of the underlying mechanism revealed that the PI3K, Cyclin D1, and CDK4 pathways were involved in the effect of bone stromal cell-derived HA on the BCC activities. Conclusion These data suggested that HA in abnormal BM stroma might be a therapeutic candidate for bone metastasis of breast cancer. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.,College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Xiaoxing Shi
- Department of Laboratory Medicine, Shanghai Wujing General Hospital, Shanghai, 201103, People's Republic of China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
6
|
Jariyal H, Gupta C, Srivastava A. Hyaluronic acid induction on breast cancer stem cells unfolds subtype specific variations in stemness and epithelial-to-mesenchymal transition. Int J Biol Macromol 2020; 160:1078-1089. [PMID: 32479949 DOI: 10.1016/j.ijbiomac.2020.05.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
Abstract
The reoccurrence of breast cancer is a major concern due to presence of cancer stem cells (CSCs). Considering the key role of hyaluronic acid (HA) in modulating the inflammation and cellular migration in cancer, the response of high molecular weight (HMW) and low molecular weight (LMW) HA towards various subtypes of breast cancer and breast cancer stem cells remain elusive. The aim of this study is to determine the effect of exogenous HMW-HA and LMW-HA on stemness of CSCs and epithelial-to-mesenchymal transition which may help in designing HA based therapeutic strategies. LMW-HA induces EMT in MCF-7 more prominently as compared to MDA-MB-231. However, HMW-HA did not show significant changes in the expression of EMT genes. Surprisingly, both HMW-HA and LMW-HA have shown to decrease the expression of EpCAM in MCF-7 cells and decrease the expression of CD44 in MDAMB-231 cells. HA has maintained the native stem cells phenotype of bCSCs isolated from MCF-7 only. The bCSCs isolated form MDAMB-231 showed a decrease in CD44. Luminal subtype has shown to follow Wnt/β-catenin whereas in the basal subtype localization of CD44 from surface to cytosol was observed in response to HA. Our study has demonstrated that bCSCs in luminal and basal cells follow differential intracellular signaling mechanisms in response to HA. This study could significantly influence the therapeutics involving HA in breast cancer.
Collapse
Affiliation(s)
- Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India.
| | - Chanchal Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
7
|
Narkhede AA, Crenshaw JH, Crossman DK, Shevde LA, Rao SS. An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells. Acta Biomater 2020; 107:65-77. [PMID: 32119920 DOI: 10.1016/j.actbio.2020.02.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023]
Abstract
Breast cancer cells (BCCs) can remain dormant at the metastatic site, which when revoked leads to formation of metastasis several years after the treatment of primary tumor. Particularly, awakening of dormant BCCs in the brain results in breast cancer brain metastasis (BCBrM) which marks the most advanced stage of the disease with a median survival period of ~4-16 months. However, our understanding of dormancy associated with BCBrM remains obscure, in part, due to the lack of relevant in vitro platforms to model dormancy associated with BCBrM. To address this need, we developed an in vitro hyaluronic acid (HA) hydrogel platform to model dormancy in brain metastatic BCCs via exploiting the bio-physical cues provided by HA hydrogels while bracketing the normal brain and metastatic brain malignancy relevant stiffness range. In this system, we observed that MDA-MB-231Br and BT474Br3 brain metastatic BCCs exhibited a dormant phenotype when cultured on soft (0.4 kPa) HA hydrogel compared to stiff (4.5 kPa) HA hydrogel as characterized by significantly lower EdU and Ki67 positivity. Further, we demonstrated the nuclear localization of p21 and p27 (markers associated with dormancy) in dormant MDA-MB-231Br cells contrary to their cytoplasmic localization in the proliferative population. We also demonstrated that the stiffness-based dormancy in MDA-MB-231Br cells was reversible and was, in part, mediated by focal adhesion kinases and the initial cell seeding density. Finally, RNA sequencing confirmed the dormant phenotype in MDA-MB-231Br cells. This platform could further our understanding of dormancy in BCBrM and could be adapted for anti-metastatic drug screening. STATEMENT OF SIGNIFICANCE: Our understanding of dormancy associated with BCBrM remains obscure, in part, due to the lack of relevant in vitro platforms to model dormancy associated with BCBrM. Herein, we present a HA hydrogel-based platform to model dormancy in brain metastatic BCCs while recapitulating key aspects of brain microenvironment. We demonstrated that the biophysical cues provided the HA hydrogel mediates dormancy in brain metastatic BCCs by assessing both proliferation and cell cycle arrest markers. We also established the role of focal adhesion kinases and initial cell seeding density in the stiffness-mediated dormancy in brain metastatic BCCs. Further, RNA-seq. confirmed the dormant phenotype in brain metastatic BCCs. This platform could be utilized to further our understanding of microenvironmental regulation of dormancy in BCBrM.
Collapse
Affiliation(s)
- Akshay A Narkhede
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - James H Crenshaw
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA.
| |
Collapse
|