1
|
Aksoy AN, Abayomi J, Relph N, Butler T. Physiological and psychological determinants of long-term diet-induced type 2 diabetes (T2DM) remission: A narrative review. Obes Rev 2024; 25:e13733. [PMID: 38511597 DOI: 10.1111/obr.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a highly prevalent metabolic disease, causing a heavy burden on healthcare systems worldwide, with related complications and anti-diabetes drug prescriptions. Recently, it was demonstrated that T2DM can be put into remission via significant weight loss using low-carbohydrate diets (LCDs) and very low-energy diets (VLEDs) in individuals with overweight and obesity. Clinical trials demonstrated remission rates of 25-77%, and metabolic improvements such as improved blood lipid profile and blood pressure were observed. In contrast, clinical trials showed that remission rate declines with time, concurrent with weight gain, or diminished weight loss. This review aims to discuss existing literature regarding underlying determinants of long-term remission of T2DM including metabolic adaptations to weight loss (e.g., role of gastrointestinal hormones), type of dietary intervention (i.e., LCDs or VLEDs), maintaining beta (β)-cell function, early glycemic control, and psychosocial factors. This narrative review is significant because determining the factors that are associated with challenges in maintaining long-term remission may help in designing sustainable interventions for type 2 diabetes remission.
Collapse
Affiliation(s)
- Ayse Nur Aksoy
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
| | - Julie Abayomi
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
| | - Nicola Relph
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
| | - Thomas Butler
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
- Cardio-Respiratory Research Centre, Edge Hill University, Ormskirk, UK
| |
Collapse
|
2
|
de Lima Macena M, Tenório da Costa Paula D, da Silva Júnior AE, Rodrigues Silva Praxedes D, Bueno NB. Longitudinal estimates of resting energy expenditure using predictive equations in individuals with excess weight after weight loss: A systematic review with meta-analysis. Clin Nutr ESPEN 2023; 58:263-269. [PMID: 38057015 DOI: 10.1016/j.clnesp.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND & AIMS To determine which resting energy expenditure (REE) predictive equation has the lowest bias in the aggregate level in individuals with excess weight during weight loss interventions. METHODS Searches were performed in MEDLINE, Web of Science, Scopus, CENTRAL and gray literature databases. Longitudinal studies on weight loss interventions which evaluated REE by predictive equations compared to that measured by indirect calorimetry in adults with excess weight at different follow-up times were included. Meta-analyses were performed with the differences between biases of predictive equations of the REE at the different follow-up times of weight loss. RESULTS Of the total of 2178 occurrences found in the databases, only eight studies were included. The Harris-Benedict (1919) equation showed the smallest differences between bias up to the third month (MD = 103.33 kcal; 95%CI = -39.01; 245.67), in the sixth month (MD = 59.16 kcal; 95%CI = 8.74; 109.57) and at the 12th month (MD = -71.41 kcal; 95%CI = -150.38; 7.55) of weight loss follow-up. Weight loss does not seem to have an effect on bias at different follow-up times. CONCLUSION Harris-Benedict (1919) equation seems to be the most adequate to assess the REE of individuals with excess weight during weight loss. However, the finding of large estimated predictive intervals may indicate that predictive equations may not be handy tools for individuals losing and regaining weight due to changes other than body weight.
Collapse
Affiliation(s)
- Mateus de Lima Macena
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Laboratório de Nutrição e Metabolismo, Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | | | - André Eduardo da Silva Júnior
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Laboratório de Nutrição e Metabolismo, Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Dafiny Rodrigues Silva Praxedes
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Laboratório de Nutrição e Metabolismo, Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Nassib Bezerra Bueno
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Laboratório de Nutrição e Metabolismo, Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil.
| |
Collapse
|
3
|
Siedler MR, De Souza MJ, Albracht-Schulte K, Sekiguchi Y, Tinsley GM. The Influence of Energy Balance and Availability on Resting Metabolic Rate: Implications for Assessment and Future Research Directions. Sports Med 2023; 53:1507-1526. [PMID: 37213050 DOI: 10.1007/s40279-023-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/23/2023]
Abstract
Resting metabolic rate (RMR) is a significant contributor to an individual's total energy expenditure. As such, RMR plays an important role in body weight regulation across populations ranging from inactive individuals to athletes. In addition, RMR may also be used to screen for low energy availability and energy deficiency in athletes, and thus may be useful in identifying individuals at risk for the deleterious consequences of chronic energy deficiency. Given its importance in both clinical and research settings within the fields of exercise physiology, dietetics, and sports medicine, the valid assessment of RMR is critical. However, factors including varying states of energy balance (both short- and long-term energy deficit or surplus), energy availability, and prior food intake or exercise may influence resulting RMR measures, potentially introducing error into observed values. The purpose of this review is to summarize the relationships between short- and long-term changes in energetic status and resulting RMR measures, consider these findings in the context of relevant recommendations for RMR assessment, and provide suggestions for future research.
Collapse
Affiliation(s)
- Madelin R Siedler
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Mary Jane De Souza
- Departments of Kinesiology and Physiology, Pennsylvania State University, University Park, PA, USA
| | | | - Yasuki Sekiguchi
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Grant M Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
4
|
Targher G, Mantovani A, Byrne CD. Mechanisms and possible hepatoprotective effects of glucagon-like peptide-1 receptor agonists and other incretin receptor agonists in non-alcoholic fatty liver disease. Lancet Gastroenterol Hepatol 2023; 8:179-191. [PMID: 36620987 DOI: 10.1016/s2468-1253(22)00338-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 01/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins that stimulate insulin secretion from pancreatic β cells in response to food ingestion. Modified GLP-1 and GIP peptides are potent agonists for their incretin receptors, and some evidence shows that the dual GLP-1 and GIP receptor agonist tirzepatide is effective in promoting marked weight loss. GLP-1 receptor agonists signal in the CNS to suppress appetite, increase satiety, and thereby decrease calorie intake, but many other effects of incretin signalling have been recognised that are relevant to the treatment of non-alcoholic fatty liver disease (NAFLD). This Review provides an overview of the literature supporting the notion that endogenous incretins and incretin-receptor agonist treatments are important not only for decreasing risk of developing NAFLD, but also for treating NAFLD and NAFLD-related complications. We discuss incretin signalling and related incretin-receptor agonist treatments, mechanisms in key relevant tissues affecting liver disease, and clinical data from randomised controlled trials. Finally, we present future perspectives in this rapidly developing field of research and clinical medicine.
Collapse
Affiliation(s)
- Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy.
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, UK; Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
5
|
Bays HE, Golden A, Tondt J. Thirty Obesity Myths, Misunderstandings, and/or Oversimplifications: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. OBESITY PILLARS 2022; 3:100034. [PMID: 37990730 PMCID: PMC10661978 DOI: 10.1016/j.obpill.2022.100034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2023]
Abstract
Background This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) is intended to provide clinicians an overview of 30 common obesity myths, misunderstandings, and/or oversimplifications. Methods The scientific support for this CPS is based upon published citations, clinical perspectives of OMA authors, and peer review by the Obesity Medicine Association leadership. Results This CPS discusses 30 common obesity myths, misunderstandings, and/or oversimplifications, utilizing referenced scientific publications such as the integrative use of other published OMA CPSs to help explain the applicable physiology/pathophysiology. Conclusions This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) on 30 common obesity myths, misunderstandings, and/or oversimplifications is one of a series of OMA CPSs designed to assist clinicians in the care of patients with the disease of obesity. Knowledge of the underlying science may assist the obesity medicine clinician improve the care of patients with obesity.
Collapse
Affiliation(s)
- Harold Edward Bays
- Louisville Metabolic and Atherosclerosis Research Center, University of Louisville School of Medicine, 3288, Illinois Avenue, Louisville, KY, 40213, USA
| | - Angela Golden
- NP Obesity Treatment Clinic, Flagstaff, AZ, 86001, USA
| | - Justin Tondt
- Department of Family and Community Medicine, Penn State Health, Penn State College of Medicine, 700 HMC Crescent Rd Hershey, PA, 17033, USA
| |
Collapse
|
6
|
|
7
|
Abstract
The observation that 64% of English adults are overweight or obese despite a rising prevalence in weight-loss attempts suggests our understanding of energy balance is fundamentally flawed. Weight-loss is induced through a negative energy balance; however, we typically view weight change as a static function, in that energy intake and energy expenditure are independent variables, resulting in a fixed rate of weight-loss assuming a constant energy deficit. Such static modelling provides the basis for the clinical assumption that a 14644 kJ (3500 kcal) deficit translates to a 1 lb weight-loss. However, this '3500 kcal (14644 kJ) rule' is consistently shown to significantly overestimate weight-loss. Static modelling disregards obligatory changes in energy expenditure associated with the loss of metabolically active tissue, i.e. skeletal muscle. Additionally, it disregards the presence of adaptive thermogenesis, the underfeeding-associated fall in resting energy expenditure beyond that caused by loss of fat-free mass. This metabolic manipulation of energy expenditure is observed from the onset of energy restriction to maintain weight at a genetically pre-determined set point. As a result, the observed magnitude of weight-loss is disproportionally less, followed by earlier weight plateau, despite strict compliance to a dietary intervention. By simulating dynamic changes in energy expenditure associated with underfeeding, mathematical modelling may provide a more accurate method of weight-loss prediction. However, accuracy at an individual level is limited due to difficulty estimating energy requirements, physical activity and dietary intake in free-living individuals. In the present paper, we aim to outline the contribution of dynamic changes in energy expenditure to weight-loss resistance and weight plateau.
Collapse
|
8
|
Müller MJ, Heymsfield SB, Bosy-Westphal A. Are metabolic adaptations to weight changes an artefact? Am J Clin Nutr 2021; 114:1386-1395. [PMID: 34134143 DOI: 10.1093/ajcn/nqab184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adaptive thermogenesis (AT) is currently defined as the fat-free mass (FFM)-independent change in resting energy expenditure (REE) in response to caloric restriction (CR) or overfeeding (OF). So far, the impact of changes in the anatomical and molecular composition of FFM on AT has not been addressed. OBJECTIVES To assess the impact of changes in FFM composition on AT. METHODS FFM was assessed in 32 healthy young men during controlled 21-d CR and 14 d of subsequent OF. Anatomical (i.e., the organ/tissue level) and molecular (i.e., water, mineral, and protein content and thus body density) composition of FFM were characterized. REE was measured by indirect calorimetry. RESULTS With CR, body weight and REE decreased by 4.2 ± 0.9 kg and 173 ± 107 kcal/d, respectively, with corresponding increases of 3.5 ± 1.2 kg and 194 ± 110 kcal/d during OF (P < 0.001 for all changes). Changes in FFM explained 56.7% and 66.7% of weight loss and weight gain, respectively. Weight changes were associated with changes in various anatomical (i.e., masses of skeletal muscle, liver, kidneys, and brain) and molecular components (total body water, protein, and bone minerals) of FFM. After adjustments for changes in FFM only, AT was 116 ± 127 (P < 0.001) and 27 ± 115 kcal/d (NS) with CR and OF, respectively. Adjustments for FFM and its anatomical and molecular composition reduced AT in response to CR to 83 ± 116 and 122 ± 123 kcal/d (P < 0.05 and P < 0.001) whereas during OF, AT became significant at 87 ± 146 kcal/d (anatomical; P < 0.05) and 86 ± 118 kcal/d (molecular; P < 0.001). CONCLUSIONS Adjusting changes in REE with under- and overfeeding for the corresponding changes in the anatomical and molecular composition of FFM decreased AT after CR and increased AT after OF, but overall adjusted AT was likely not large enough in magnitude to be able to prevent weight loss or resist weight gain.
Collapse
Affiliation(s)
- Manfred J Müller
- Institute of Human Nutrition and Food Science, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | | - Anja Bosy-Westphal
- Institute of Human Nutrition and Food Science, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
9
|
Verboven K, Hansen D. Critical Reappraisal of the Role and Importance of Exercise Intervention in the Treatment of Obesity in Adults. Sports Med 2021; 51:379-389. [PMID: 33332014 DOI: 10.1007/s40279-020-01392-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the treatment of obesity in adults, exercise intervention is recommended and some people with obesity even prefer exercise above dietary intervention as a single weight-loss strategy. However, evidence is accumulating that the long-term body weight and adipose tissue mass loss as a result of exercise intervention in these individuals is disappointingly small. Although this could be related to various clinical reasons, more recent evidence reveals that also (patho)physiological abnormalities are involved which cannot be remediated by exercise intervention, especially in metabolically compromised patients. As a result, the role and importance of exercise intervention in the treatment of obesity deserve significant reconsideration to avoid confusion and disappointment amongst clinicians, patients and society. Hence, to reduce adipose tissue mass and body weight, dietary intervention is much more effective than exercise intervention, and is, therefore, of key importance in this endeavour. However, dietary interventions must be supplemented by exercise training to induce clinically relevant changes in specific cardiovascular or metabolic risk factors like blood pressure, blood triglycerides and high-density lipoprotein cholesterol concentrations, as well as visceral adipose tissue mass, physical fitness, muscle mass and strength, quality of life and life expectancy. This allows individuals with obesity to preserve their cardiometabolic health or to shift from a metabolically unhealthy phenotype to a metabolically healthy phenotype. Signifying the true clinical value of exercise interventions might lead to a better understanding and appreciation of the goals and associated effects when implemented in the multidisciplinary treatment of obesity, for which a proper tailoring of exercise prescription is required.
Collapse
Affiliation(s)
- Kenneth Verboven
- REVAL-Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Building A, 3590, AgoralaanDiepenbeek, Belgium. .,BIOMED-Biomedical Research Center, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.
| | - Dominique Hansen
- REVAL-Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Building A, 3590, AgoralaanDiepenbeek, Belgium.,BIOMED-Biomedical Research Center, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.,Jessa Hospital, Heart Centre Hasselt, Hasselt, Belgium
| |
Collapse
|
10
|
Magkos F, Astrup A. Dietary Carbohydrate, Energy Expenditure, and Weight Loss: Is Eating Less and Burning More Possible? J Nutr 2021; 151:468-470. [PMID: 33561211 DOI: 10.1093/jn/nxaa423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark.,Novo Nordisk Foundation, Hellerup, Denmark
| |
Collapse
|
11
|
Body Composition Changes after a Weight Loss Intervention: A 3-Year Follow-Up Study. Nutrients 2021; 13:nu13010164. [PMID: 33430216 PMCID: PMC7825716 DOI: 10.3390/nu13010164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/14/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022] Open
Abstract
Studies comparing different types of exercise-based interventions have not shown a consistent effect of training on long-term weight maintenance. The aim of this study was to compare the effects of exercise modalities combined with diet intervention on body composition immediately after intervention and at 3 years’ follow-up in overweight and obese adults. Two-hundred thirty-nine people (107 men) participated in a 6-month diet and exercise-based intervention, split into four randomly assigned groups: strength group (S), endurance group (E), combined strength and endurance group (SE), and control group (C). The body composition measurements took place on the first week before the start of training and after 22 weeks of training. In addition, a third measurement took place 3 years after the intervention period. A significant interaction effect (group × time) (p = 0.017) was observed for the fat mass percentage. It significantly decreased by 5.48 ± 0.65%, 5.30 ± 0.65%, 7.04 ± 0.72%, and 4.86 ± 0.65% at post-intervention for S, E, SE, and C, respectively. Three years after the intervention, the fat mass percentage returned to values similar to the baseline, except for the combined strength and endurance group, where it remained lower than the value at pre-intervention (p < 0.05). However, no significant interaction was discovered for the rest of the studied outcomes, neither at post-intervention nor 3 years later. The combined strength and endurance group was the only group that achieved lower levels of fat mass (%) at both post-intervention and 3 years after intervention, in comparison with the other groups.
Collapse
|