1
|
Yue S, Su M, Zhang Z, Li J, Leng J, Li W, Liu J, Zhang T, Qiao Y, Yu Z, Hu G, Ma J, Yang X, Wang H. Associations of maternal cyclin-dependent kinase 5 regulatory subunit-associated protein 1-like 1(CDKAL1) gene variants with adverse pregnancy outcome in Chinese women. BMC Pregnancy Childbirth 2025; 25:347. [PMID: 40133860 PMCID: PMC11934754 DOI: 10.1186/s12884-025-07418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVE To test associations of cyclin-dependent kinase 5 regulatory subunit-associated protein 1-like 1 (CDKAL1) gene variants with the risk of adverse pregnancy outcome in Chinese women and whether the association was mediated by occurrence of gestational diabetes mellitus. METHODS We organized a 1:1 age-matched study nested within a prospective cohort of pregnant women (207 pairs) established in urban Tianjin. Adverse pregnancy outcome was defined as a composite outcome of preterm birth, low birth weight or macrosomia. Logistic regression analyses were used to estimate associations of CDKAL1 gene variants with adverse pregnancy outcome and its components. The CDKAL1 genetic marker was defined as encompassing any of the identified susceptibility variants for adverse pregnancy outcome. RESULTS The CDKAL1 genetic marker was associated with the risk of adverse pregnancy outcome (OR: 2.51, 95%CI: 1.47, 4.28), low birth weight (OR: 19.80, 95%CI: 2.15, 182) and macrosomia (OR: 2.40, 95%CI: 1.17, 4.93), but not with preterm birth (P = 0.105) after adjusting for traditional risk factors. Further adjusting for gestational diabetes mellitus, the CDKAL1 genetic marker remained significantly associated with adverse pregnancy outcome, and the OR (95%CI) was 2.52 (1.48, 4.30). CONCLUSION The maternal CDKAL1 gene variants were associated with increased risk of adverse pregnancy outcome, low birth weight and macrosomia, independent of gestational diabetes mellitus. CDKAL1 gene might be a useful marker for identification of individuals at a particularly high risk of adverse pregnancy outcome in early pregnancy.
Collapse
Affiliation(s)
- Shuoying Yue
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Meng Su
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zihao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Junhong Leng
- Project Office, Tianjin Women and Children's Health Center, Tianjin, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children's Health Center, Tianjin, China
| | - Jin Liu
- Project Office, Tianjin Women and Children's Health Center, Tianjin, China
| | - Tao Zhang
- Project Office, Tianjin Women and Children's Health Center, Tianjin, China
| | - Yijuan Qiao
- Project Office, Tianjin Women and Children's Health Center, Tianjin, China
| | - Zhijie Yu
- Population Cancer Research Program, Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Jun Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Xilin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China.
| |
Collapse
|
2
|
Long BY, Liang X. Dietary management of gestational diabetes: A review. Medicine (Baltimore) 2024; 103:e38715. [PMID: 38996126 PMCID: PMC11245252 DOI: 10.1097/md.0000000000038715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a common condition in pregnant women that can affect the health of both the mother and the fetus. A healthy diet reduces the risk of GDM, while on the contrary, an unhealthy diet can increase the risk of developing GDM. Dietary interventions remain an important way to control GDM at this time. However, real-life diets are complex and varied, and the effect of these diets on gestational diabetes is unknown. This article summarizes research related to dietary control of GDM. Hopefully, this will help with dietary interventions for people with GDM.
Collapse
Affiliation(s)
- Bin-Yang Long
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Liang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Reproductive Maternity and Childhood Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Suthon S, Tangjittipokin W. Mechanisms and Physiological Roles of Polymorphisms in Gestational Diabetes Mellitus. Int J Mol Sci 2024; 25:2039. [PMID: 38396716 PMCID: PMC10888615 DOI: 10.3390/ijms25042039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a significant pregnancy complication linked to perinatal complications and an elevated risk of future metabolic disorders for both mothers and their children. GDM is diagnosed when women without prior diabetes develop chronic hyperglycemia due to β-cell dysfunction during gestation. Global research focuses on the association between GDM and single nucleotide polymorphisms (SNPs) and aims to enhance our understanding of GDM's pathogenesis, predict its risk, and guide patient management. This review offers a summary of various SNPs linked to a heightened risk of GDM and explores their biological mechanisms within the tissues implicated in the development of the condition.
Collapse
Affiliation(s)
- Sarocha Suthon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence Management, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
4
|
Lizárraga D, Gómez-Gil B, García-Gasca T, Ávalos-Soriano A, Casarini L, Salazar-Oroz A, García-Gasca A. Gestational diabetes mellitus: genetic factors, epigenetic alterations, and microbial composition. Acta Diabetol 2024; 61:1-17. [PMID: 37660305 DOI: 10.1007/s00592-023-02176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder, usually diagnosed during the third trimester of pregnancy that usually disappears after delivery. In GDM, the excess of glucose, fatty acids, and amino acids results in foetuses large for gestational age. Hyperglycaemia and insulin resistance accelerate the metabolism, raising the oxygen demand, and creating chronic hypoxia and inflammation. Women who experienced GDM and their offspring are at risk of developing type-2 diabetes, obesity, and other metabolic or cardiovascular conditions later in life. Genetic factors may predispose the development of GDM; however, they do not account for all GDM cases; lifestyle and diet also play important roles in GDM development by modulating epigenetic signatures and the body's microbial composition; therefore, this is a condition with a complex, multifactorial aetiology. In this context, we revised published reports describing GDM-associated single-nucleotide polymorphisms (SNPs), DNA methylation and microRNA expression in different tissues (such as placenta, umbilical cord, adipose tissue, and peripheral blood), and microbial composition in the gut, oral cavity, and vagina from pregnant women with GDM, as well as the bacterial composition of the offspring. Altogether, these reports indicate that a number of SNPs are associated to GDM phenotypes and may predispose the development of the disease. However, extrinsic factors (lifestyle, nutrition) modulate, through epigenetic mechanisms, the risk of developing the disease, and some association exists between the microbial composition with GDM in an organ-specific manner. Genes, epigenetic signatures, and microbiota could be transferred to the offspring, increasing the possibility of developing chronic degenerative conditions through postnatal life.
Collapse
Affiliation(s)
- Dennise Lizárraga
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Bruno Gómez-Gil
- Laboratory of Microbial Genomics, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Teresa García-Gasca
- Laboratory of Molecular and Cellular Biology, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias s/n, 76230, Juriquilla, Querétaro, Mexico
| | - Anaguiven Ávalos-Soriano
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Azucena Salazar-Oroz
- Maternal-Fetal Department, Instituto Vidalia, Hospital Sharp Mazatlán, Avenida Rafael Buelna y Dr. Jesús Kumate s/n, 82126, Mazatlán, Sinaloa, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
5
|
Wang Y, Li L, Li P. Novel single nucleotide polymorphisms in gestational diabetes mellitus. Clin Chim Acta 2023; 538:60-64. [PMID: 36375523 DOI: 10.1016/j.cca.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
The association between gestational diabetes mellitus (GDM) and single nucleotide polymorphisms (SNPs) has attracted global research attention. Exploring SNPs can help us further understand the pathogenesis of GDM, predict the risk of GDM, and guide the management of GDM patients. In this review, we summarized the studies on the association between SNPs and GDM, focusing on novel SNPs published in the last 10 years. The SNPs identified to be associated with GDM included HMG20A (rs7178572), CDKAL1 (rs7756992, rs7754840, and rs7747752), ADIPOQ (rs266729 and rs17300539), MTHFR (rs1801133), IL10 (rs3021094), CDKN2B (rs1063192), and TRPM5 (rs35197079). However, the role of SNPs in the prediction, diagnosis, treatment, and prognosis of GDM, as a polygenic disease, needs to be further explored in multiple ethnic populations.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
6
|
Wang H, Li J, Liu J, Leng J, Li W, Yu Z, Tam CHT, Hu G, Ma RCW, Fang Z, Wang Y, Yang X. Interactions of CDKAL1 rs7747752 polymorphism and serum levels of L-carnitine and choline are related to increased risk of gestational diabetes mellitus. GENES & NUTRITION 2022; 17:14. [PMID: 36183068 PMCID: PMC9526259 DOI: 10.1186/s12263-022-00716-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Interactions between genetic, metabolic, and environmental factors lead to gestational diabetes mellitus (GDM). We aimed to examine interactive effects of cyclin-dependent kinase 5 regulatory subunit-associated protein1-like 1(CDKAL1) rs7747752 polymorphism with low serum levels of L-carnitine, choline, and betaine for GDM. METHODS A nested case-control study of 207 GDM women and their one-to-one, age-matched controls was organized from a prospective cohort of pregnant women in Tianjin, China. Conditional logistic regressions were used to test associations between CDKAL1 rs7747752 and serum levels of L-carnitine, choline, and betaine, and the risk of GDM. Additive interactions were performed to examine interactive effects of rs7747752 and low serum levels of L-carnitine, choline, and betaine on the risk of GDM. RESULTS The CDKAL1 rs7747752 G > C was associated with GDM in additive, dominant, and recessive model (P <0.05). The rs7747752 CC genotype enhanced the OR of L-carnitine ≤ vs. > 150 nmol/mL for GDM from 6.14 (2.61-14.4) to 19.6 (5.65-68.1) and the OR of choline ≤ vs. > 110 nmol/mL from 2.37 (1.07-5.28) to 12.1 (3.22-45.6), with significant additive interactions. Similarly, CG genotype also enhanced the OR of L-carnitine ≤ vs. > 150 nmol/mL for GDM from 4.70 (2.01-11.0) to 11.4 (3.98-32.9), with a significant additive interaction. However, the additive interaction between rs7747752 and betaine ≤ 200 nmol/mL on the risk of GDM was not significant. CONCLUSIONS The CC or CG genotype carriers in rs7747752 of CDKAL1 who have a low serum level of L-carnitine or choline are at a particular high risk of GDM. Randomized controlled trials are warranted to test the effect of supplement of L-carnitine or choline on the risk of GDM in the high-risk group.
Collapse
Affiliation(s)
- Hui Wang
- grid.265021.20000 0000 9792 1228Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, 300070 China
| | - Jing Li
- grid.265021.20000 0000 9792 1228Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, 300070 China ,grid.265021.20000 0000 9792 1228Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070 China ,grid.265021.20000 0000 9792 1228Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070 China
| | - Jinnan Liu
- grid.265021.20000 0000 9792 1228Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, 300070 China
| | - Junhong Leng
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, 300041 China
| | - Weiqin Li
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, 300041 China
| | - Zhijie Yu
- grid.55602.340000 0004 1936 8200Population Cancer Research Program and Department of Pediatrics, Dalhousie University, Halifax, B3H 4R2 Canada
| | - Claudia H. T. Tam
- grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, 999077 China
| | - Gang Hu
- grid.250514.70000 0001 2159 6024Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808 USA
| | - Ronald C. W. Ma
- grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, 999077 China
| | - Zhongze Fang
- grid.265021.20000 0000 9792 1228Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070 China ,grid.265021.20000 0000 9792 1228Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070 China ,grid.265021.20000 0000 9792 1228Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070 China
| | - Ying Wang
- grid.410560.60000 0004 1760 3078Scientific Research Platform of the Second School of Clinical Medicine & Key Laboratory of 3D Printing Technology in Stomatology, Guangdong Medical University, Dongguan, 523808 Guangdong China
| | - Xilin Yang
- grid.265021.20000 0000 9792 1228Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, 300070 China ,grid.265021.20000 0000 9792 1228Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070 China ,grid.265021.20000 0000 9792 1228Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070 China
| |
Collapse
|
7
|
Li N, Li J, Wang H, Liu J, Li W, Yang K, Huo X, Leng J, Yu Z, Hu G, Fang Z, Yang X. Branched-Chain Amino Acids and Their Interactions With Lipid Metabolites for Increased Risk of Gestational Diabetes. J Clin Endocrinol Metab 2022; 107:e3058-e3065. [PMID: 35271718 PMCID: PMC9891107 DOI: 10.1210/clinem/dgac141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE We aimed to explore associations of branched-chain amino acids (BCAA) in early pregnancy with gestational diabetes mellitus (GDM), and whether high BCAAs and lipidomics markers had interactive effects on the risk of GDM. METHODS We conducted a 1:1 case-control study (n = 486) nested in a prospective cohort of pregnant women in Tianjin, China. Blood samples were collected at their first antenatal care visit (median 10 gestational weeks). Serum BCAAs, saturated fatty acids (SFA) and lysophosphatidylcholines (LPC) were measured by liquid chromatography-tandem mass spectrometry analysis. Conditional logistic regression was performed to examine associations of BCAAs with the risk of GDM. Interactions between high BCAAs and high SFA16:0 for GDM were examined using additive interaction measures. RESULTS High serum valine, leucine, isoleucine, and total BCAAs were associated with markedly increased risk of GDM (OR of top vs bottom tertiles: 1.91 [95% CI, 1.22-3.01]; 1.87 [1.20-2.91]; 2.23 [1.41-3.52]; 1.93 [1.23-3.02], respectively). The presence of high SFA16:0 defined as ≥ 17.1 nmol/mL (ie, median) markedly increased the ORs of high leucine alone and high isoleucine alone up to 4.56 (2.37-8.75) and 4.41 (2.30-8.43) for the risk of GDM, with significant additive interaction. After adjustment for LPCs, the ORs were greatly elevated (6.33, 2.25-17.80 and 6.53, 2.39-17.86) and the additive interactions became more significant. CONCLUSION BCAAs in early pregnancy were positively associated with the risk of GDM, and high levels of leucine and isoleucine enhanced the risk association of high SFA16:0 with GDM, independent of LPCs.
Collapse
Affiliation(s)
| | | | - Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jinnan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Kai Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaoxu Huo
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Junhong Leng
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Zhijie Yu
- Population Cancer Research Program and Department of Pediatrics, Dalhousie University
Halifax, Canada
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Zhongze Fang
- Prof. Zhongze Fang, Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | - Xilin Yang
- Correspondence: Prof. Xilin Yang, P.O. Box 154, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China. ; or
| |
Collapse
|
8
|
Wang H, Li J, Leng J, Li W, Liu J, Yan X, Yu Z, Hu G, Ma RCW, Fang Z, Wang Y, Yang X. The CDKAL1 rs7747752-Bile Acids Interaction Increased Risk of Gestational Diabetes Mellitus: A Nested Case-Control Study. Front Endocrinol (Lausanne) 2022; 13:808956. [PMID: 35360068 PMCID: PMC8960111 DOI: 10.3389/fendo.2022.808956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
AIMS The study aimed to explore additive interactions of CDKAL1 rs7747752 and GUDCA/DCA for GDM risk and whether the interactive effects on the risk of GDM was mediated via increasing lysophosphatidylcholines (LPC) 18:0 and/or saturated fatty acid (SFA) 16:0. METHODS A 1:1 age-matched study nested in a prospective cohort of pregnant women (207 pairs) was organized in Tianjin, China. Additive interactions were used to test interaction effects while mediation analyses and Sobel tests were used to test mediation effects of LPC18:0 and SFA16:0 between copresence of rs7747752 and low GUDCA/DCA, and GDM risk. RESULTS The CDKAL1 rs7747752 was associated with GDM (P<0.05). The rs7747752 C polymorphism markedly enhanced ORs of low GUDCA from 4.04 (0.72-22.8) to 9.02 (1.63-49.7) and low DCA from 1.67 (0.68-4.11) to 4.24 (1.84-9.76), both with significant additive interactions. Further adjustment for LPC18:0 attenuated the interactive effects of rs7747752 and low DCA, with a significant mediation effect (P=0.003). High SFA16:0 did not mediate the interactive effects of rs7747752 and low DCA/GUDCA on GDM risk. CONCLUSIONS The CDKAL1 rs7747752 C carrier status and low GUDCA/DCA had significant additive interactions on the risk of GDM with the effect from interaction with DCA being partially mediated via increasing LPC18:0.
Collapse
Affiliation(s)
- Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
| | - Junhong Leng
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Jinnan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Shanxi, China
| | - Zhijie Yu
- Population Cancer Research Program and Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Ronald C. W. Ma
- Department of Medicine and Therapeutics and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zhongze Fang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- *Correspondence: Xilin Yang, ; ; Ying Wang, ; Zhongze Fang,
| | - Ying Wang
- Scientific Research Platform of the Second School of Clinical Medicine & Key Laboratory of 3D Printing Technology in Stomatology, Guangdong Medical University, Dongguan, China
- *Correspondence: Xilin Yang, ; ; Ying Wang, ; Zhongze Fang,
| | - Xilin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- *Correspondence: Xilin Yang, ; ; Ying Wang, ; Zhongze Fang,
| |
Collapse
|
9
|
Alves M, Fernandes MA, Bahat G, Benetos A, Clemente H, Grodzicki T, Martínez-Sellés M, Mattace-Raso F, Rajkumar C, Ungar A, Werner N, Strandberg TE. Protecting older patients with cardiovascular diseases from COVID-19 complications using current medications. Eur Geriatr Med 2021; 12:725-739. [PMID: 34031865 PMCID: PMC8143992 DOI: 10.1007/s41999-021-00504-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE In the pathogenesis of severe COVID-19 complications, derangements of renin-angiotensin-aldosterone system (RAAS), vascular endothelial dysfunction leading to inflammation and coagulopathy, and arrhythmias play an important role. Therefore, it is worth considering the use of currently available drugs to protect COVID-19 patients with cardiovascular diseases. METHODS We review the current experience of conventional cardiovascular drugs [angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers, anticoagulants, acetosalicylic acid, antiarrhythmic drugs, statins] as well as some other drug classes (antidiabetic drugs, vitamin D and NSAIDs) frequently used by older patients with cardiovascular diseases. Data were sought from clinical databases for COVID-19 and appropriate key words. Conclusions and recommendations are based on a consensus among all authors. RESULTS Several cardiovascular drugs have a potential to protect patients with COVID-19, although evidence is largely based on retrospective, observational studies. Despite propensity score adjustments used in many analyses observational studies are not equivalent to randomised controlled trials (RCTs). Ongoing RCTs include treatment with antithrombotics, pulmonary vasodilators, RAAS-related drugs, and colchicine. RCTs in the acute phase of COVID-19 may not, however, recognise the benefits of long term anti-atherogenic therapies, such as statins. CONCLUSIONS Most current cardiovascular drugs can be safely continued during COVID-19. Some drug classes may even be protective. Age-specific data are scarce, though, and conditions which are common in older patients (frailty, comorbidities, polypharmacy) must be individually considered for each drug group.
Collapse
Affiliation(s)
- Mariana Alves
- Faculty of Medicine, Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Serviço de Medicina III, Hospital Pulido Valente, CHULNUniversity of LisbonUniversidade de Lisboa, Lisbon, Portugal
| | - Marília Andreia Fernandes
- Department of Internal Medicine, Hospital Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Gülistan Bahat
- Istanbul Medical School, Department of Internal Medicine, Division of Geriatrics, Istanbul University, Capa, 34093, Istanbul, Turkey
| | - Athanase Benetos
- Department of Geriatrics and FHU CARTAGE-PROFILES, CHRU de Nancy and INSERM 1116, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Hugo Clemente
- Department of Geriatrics, Centre Hospitalier de Wallonie Picarde, Tournai, Belgium
| | - Tomasz Grodzicki
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Cracow, Poland
| | - Manuel Martínez-Sellés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, CIBER-CV. Universidad Europea, Universidad Complutense, Madrid, Spain
| | - Francesco Mattace-Raso
- Division of Geriatrics, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Andrea Ungar
- Department of Geriatrics and Intensive Care Unit, University of Florence and Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Nikos Werner
- Heart Center Trier, Krankenhaus der Barmherzigen Brüder, Trier, Germany
| | - Timo E Strandberg
- Helsinki University and Helsinki University Hospital, Haartmaninkatu 4, PO Box 340, N00029, Helsinki, Finland.
- University of Oulu, Center for Life Course Health Research, Oulu, Finland.
| |
Collapse
|