1
|
Zhang B, Mi B, Dang S, Yan H. Maternal Folic Acid and Dietary Folate Intake in Relation to Sex Ratio at Birth and Sex-Specific Birth Weight in China. Nutrients 2024; 16:3122. [PMID: 39339722 PMCID: PMC11434778 DOI: 10.3390/nu16183122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND It is well-established that prenatal folic acid supplements can reduce neural tube defects. However, the associations between folic acid supplementation, dietary folate intake, and overall folate intake with sex-specific birth outcomes are not yet fully understood. OBJECTIVES This study aims to investigate the association of periconceptional folic acid supplement, dietary folate, and total folate intake with the sex ratio at birth and sex-specific birth weight. METHODS Data were sourced from a cross-sectional survey conducted between August and December 2013 in Northwest China, involving 7318 infants and their mothers, recruited using a stratified multistage random sampling method. Folic acid supplements (400 μg/d) were ascertained via a retrospective in-person interview. Dietary folate was evaluated using a validated food frequency questionnaire. Birth outcomes, including sex and weight at birth, were obtained from the Medical Certificate of Birth. Generalized linear models were employed to calculate relative risks (RRs) or differences with 95% confidence intervals (CIs). RESULTS No association or dose-response relationship was observed between folic acid supplement, dietary folate, and total folate intake during periconception and the likelihood of male births. However, women who took folic acid supplements during pre- and post-conception were associated with an increased male birth weight by 52.8 (8.1 to 97.5) g. Additionally, the total folate intake during periconception was associated with birth weight for males (upper vs. lower tertile: β = 38.8, 95%CI: 5.0 to 72.5 g, p-trend = 0.024) and females (upper vs. lower tertile: β = 42.4, 95%CI: 6.7 to 78.1; p-trend = 0.022). CONCLUSIONS Our findings indicate that periconceptional total folate intake does not correlate with sex ratio at birth but was positively linked to infant birth weights, regardless of gender. These findings offer novel insights into potential benefits of total folate intake, beyond the prevention of neural tube defects, for policymakers and public health.
Collapse
Affiliation(s)
- Binyan Zhang
- School of Public Health, Xi'an Medical College, Xi'an 710021, China
- Department of Epidemiology and Health Statistics, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Baibing Mi
- Department of Epidemiology and Health Statistics, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shaonong Dang
- Department of Epidemiology and Health Statistics, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hong Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
2
|
Valenzuela Villela KS, Alvarado Araujo KV, Garcia Casillas PE, Chapa González C. Protective Encapsulation of a Bioactive Compound in Starch-Polyethylene Glycol-Modified Microparticles: Degradation Analysis with Enzymes. Polymers (Basel) 2024; 16:2075. [PMID: 39065392 PMCID: PMC11280849 DOI: 10.3390/polym16142075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Starch is a promising polymer for creating novel microparticulate systems with superior biocompatibility and controlled drug delivery capabilities. In this study, we synthesized polyethylene glycol (PEG)-modified starch microparticles and encapsulated folic acid using a solvent-mediated acid-base precipitation method with magnetic stirring, which is a simple and effective method. To evaluate particle degradation, we simulated physiological conditions by employing an enzymatic degradation approach. Our results with FTIR and SEM confirmed the successful synthesis of starch-PEG microparticles encapsulating folic acid. The average size of starch microparticles encapsulating folic acid was 4.97 μm and increased to 6.01 μm upon modification with PEG. The microparticles were first exposed to amylase at pH 6.7 and pepsin at pH 1.5 at different incubation times at physiological temperature with shaking. Post-degradation analysis revealed changes in particle size and morphology, indicating effective enzymatic degradation. FTIR spectroscopy was used to assess the chemical composition before and after degradation. The initial FTIR spectra displayed characteristic peaks of starch, PEG, and folic acid, which showed decreased intensities after enzymatic degradation, suggesting alterations in chemical composition. These findings demonstrate the ongoing development of starch-PEG microparticles for controlled drug delivery and other biomedical applications and provide the basis for further exploration of PEG-starch as a versatile biomaterial for encapsulating bioactive compounds.
Collapse
Affiliation(s)
- Karen Sofia Valenzuela Villela
- Grupo de Investigación Nanomedicina, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (K.S.V.V.); (K.V.A.A.)
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico
| | - Karen Valeria Alvarado Araujo
- Grupo de Investigación Nanomedicina, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (K.S.V.V.); (K.V.A.A.)
| | | | - Christian Chapa González
- Grupo de Investigación Nanomedicina, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (K.S.V.V.); (K.V.A.A.)
| |
Collapse
|
3
|
Morales E, Prieto-Sánchez MT, Mendiola J, Cutillas-Tolín A, Adoamnei E, Valera-Gran D, Martínez-Graciá C, Santaella-Pascual M, Suárez-Martinez C, Vioque J, Castaños MJ, Del Castillo E, García-Marcos L. Maternal non-compliance with recommended folic acid supplement use alters global DNA methylation in cord blood of newborns: A cohort study. Clin Nutr 2024; 43:1191-1198. [PMID: 38631086 DOI: 10.1016/j.clnu.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND & AIMS Prenatal folate exposure may alter epigenetic marks in the offspring. We aimed to evaluate associations between prenatal exposure to folic acid (FA) in preconception and in utero with cord blood DNA methylation in long interspersed nuclear element 1 (LINE-1) and Alu short interspersed nuclear elements (SINEs) as markers of global DNA methylation levels. METHODS Data come from 325 mother-child pairs participating in the Nutrition in Early Life and Asthma (NELA) birth cohort (2015-2018). Pregnant women were asked about supplement use, including brand name and dose, one month before pregnancy (preconception) and through the trimesters of pregnancy. Maternal dietary folate intake was assessed using a validated food frequency questionnaire with additional questions for FA supplement use. Folate serum levels were measured in mothers at 24 weeks of gestation and in cord blood of newborns. DNA methylation was quantitatively assessed by bisulfite pyrosequencing on 5 LINE-1 and 3 Alu different elements. Associations were estimated using multivariable linear regression models. RESULTS A reduction in methylation levels of LINE-1 in newborns was associated with the use of FA supplements below the recommended doses (<400 ug/day) during preconception (-0.50; 95% CI: -0.91, -0.09; P = 0.016), and from preconception up to 12 weeks of gestation (-0.48; 95% CI: -0.88, -0.08; P = 0.018). Maternal use of FA supplements above the tolerable upper intake level of 1000 ug/day from preconception until 12 weeks of gestation was also related to lower methylation in LINE-1 at birth (-0.77; 95% CI: -1.52, -0.02; P = 0.044). Neither FA supplement use after 12 weeks of gestation nor maternal total folate intake (diet plus supplements) were associated with global DNA methylation levels at birth. CONCLUSIONS Maternal non-compliance with the use of FA supplement recommendations from preconception up to 12 weeks of gestation reduces offspring global DNA methylation levels at birth.
Collapse
Affiliation(s)
- Eva Morales
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, Faculty of Medicine, University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - María Teresa Prieto-Sánchez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; Materno-Fetal Medicine Unit, Obstetrics and Gynaecology Service, "Virgen de la Arrixaca" University Clinical Hospital, University of Murcia, Murcia, Spain
| | - Jaime Mendiola
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, Faculty of Medicine, University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Ana Cutillas-Tolín
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, Faculty of Medicine, University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Evdochia Adoamnei
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; Department of Nursing, University of Murcia School of Nursing, Murcia, Spain
| | - Desirée Valera-Gran
- Department of Surgery and Pathology, Miguel Hernandez University, 03550 Alicante, Spain; Grupo de Investigación en Terapia Ocupacional (InTeO), Miguel Hernandez University, 03550 Alicante, Spain; Health and Biomedical Research Institute of Alicante, University Miguel Hernandez (ISABIAL-UMH), Alicante, Spain
| | - Carmen Martínez-Graciá
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; Department of Food Science and Technology, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - Marina Santaella-Pascual
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; Department of Food Science and Technology, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - Clara Suárez-Martinez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; Department of Food Science and Technology, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - Jesús Vioque
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Health and Biomedical Research Institute of Alicante, University Miguel Hernandez (ISABIAL-UMH), Alicante, Spain
| | - María Jesús Castaños
- Obstetrics & Gynecology Service, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, Murcia, Spain
| | - Eva Del Castillo
- Obstetrics & Gynecology Service, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, Murcia, Spain
| | - Luis García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children's Hospital, University of Murcia, Murcia, Spain; ARADyAL Allergy Network, Madrid, Spain
| |
Collapse
|
4
|
Krzyzewska IM, Lauffer P, Mul AN, Laan LVD, Yim AYFL, Cobben JM, Niklinski J, Chomczyk MA, Smigiel R, Mannens MMAM, Henneman P. Expression Quantitative Trait Methylation Analysis Identifies Whole Blood Molecular Footprint in Fetal Alcohol Spectrum Disorder (FASD). Int J Mol Sci 2023; 24:ijms24076601. [PMID: 37047575 PMCID: PMC10095438 DOI: 10.3390/ijms24076601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) encompasses neurodevelopmental disabilities and physical birth defects associated with prenatal alcohol exposure. Previously, we attempted to identify epigenetic biomarkers for FASD by investigating the genome-wide DNA methylation (DNAm) profiles of individuals with FASD compared to healthy controls. In this study, we generated additional gene expression profiles in a subset of our previous FASD cohort, encompassing the most severely affected individuals, to examine the functional integrative effects of altered DNAm status on gene expression. We identified six differentially methylated regions (annotated to the SEC61G, REEP3, ZNF577, HNRNPF, MSC, and SDHAF1 genes) associated with changes in gene expression (p-value < 0.05). To the best of our knowledge, this study is the first to assess whole blood gene expression and DNAm-gene expression associations in FASD. Our results present novel insights into the molecular footprint of FASD in whole blood and opens opportunities for future research into multi-omics biomarkers for the diagnosis of FASD.
Collapse
Affiliation(s)
- Izabela M. Krzyzewska
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Peter Lauffer
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Adri N. Mul
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Liselot van der Laan
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Andrew Y. F. Li Yim
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jan Maarten Cobben
- Department of Pediatric Endocrinology and Faculty of Medicine, Northwest Thames Regional Genetics NHS, Imperial College, London SW7 2BX, UK
| | - Jacek Niklinski
- Department of Molecular Biology, Medical University of Bialystok, Jana Kilińskiego 1, 15-089 Białystok, Poland
| | - Monika A. Chomczyk
- Department of Molecular Biology, Medical University of Bialystok, Jana Kilińskiego 1, 15-089 Białystok, Poland
| | - Robert Smigiel
- Department of Genetics, Medical University of Wroclaw, Wybrzeże Ludwika Pasteura 1, 50-367 Wrocław, Poland
| | - Marcel M. A. M. Mannens
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Nickels EM, Li S, Morimoto L, Kang AY, de Smith AJ, Metayer C, Wiemels JL. Periconceptional folate intake influences DNA methylation at birth based on dietary source in an analysis of pediatric acute lymphoblastic leukemia cases and controls. Am J Clin Nutr 2022; 116:1553-1564. [PMID: 36178055 PMCID: PMC9761733 DOI: 10.1093/ajcn/nqac283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Periconceptional folate intake is associated with the establishment of DNA methylation in offspring; however, variations in this relation by food sources compared with folic acid supplements are not described. Also, maternal folate intake is associated with decreased risk of pediatric acute lymphoblastic leukemia (ALL), but the mechanism is not known. OBJECTIVES We evaluated the relation between periconceptional folate intake by source and DNA methylation at birth in a cohort of pediatric ALL cases and controls in an epigenome-wide association study. METHODS Genome-wide DNA methylation status obtained from archived neonatal blood spots from pediatric ALL cases (n = 189) and controls (n = 205) in the California Childhood Leukemia Study (CCLS) from 1995-2008 was compared with periconceptional folate from total, food, and supplemental sources using multivariable linear regression. Further stratification was performed by income, education, ethnicity, and total folate intake. We evaluated variable DNA methylation response to periconceptional folate by ALL case status through an interaction term. RESULTS Two significant differentially methylated probes (DMPs) were associated with food and supplemental periconceptional folate intake in all subjects (n = 394). The top differentially methylated region at the promoter region of DUSP22(dual specificity phosphatase 22) demonstrated DNA hypermethylation in ALL cases but not in controls in response to total and food folate intake. We further identified 8 interaction term DMPs with variable DNA methylation response to folate intake by ALL case status. Further stratification of the cohort by education and ethnicity revealed a substantially higher number of DMPs associated with supplemental folic acid intake in Hispanic subjects with lower income and educational level. CONCLUSIONS We identified modest associations between periconceptional folate intake and DNA methylation differing by source, including variation by ALL case status. Hispanic subjects of lower income and education appear uniquely responsive to periconceptional folate supplementation.
Collapse
Affiliation(s)
- Eric M Nickels
- Children's Hospital Los Angeles, Center for Blood Disease Institute, Los Angeles, CA, USA
- University of Southern California Keck School of Medicine, Center for Genetic Epidemiology, Los Angeles, CA, USA
| | - Shaobo Li
- University of Southern California Keck School of Medicine, Center for Genetic Epidemiology, Los Angeles, CA, USA
| | - Libby Morimoto
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Alice Y Kang
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Adam J de Smith
- University of Southern California Keck School of Medicine, Center for Genetic Epidemiology, Los Angeles, CA, USA
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Joseph L Wiemels
- University of Southern California Keck School of Medicine, Center for Genetic Epidemiology, Los Angeles, CA, USA
| |
Collapse
|