1
|
Pang B, Dong G, Pang T, Sun X, Liu X, Nie Y, Chang X. Emerging insights into the pathogenesis and therapeutic strategies for vascular endothelial injury-associated diseases: focus on mitochondrial dysfunction. Angiogenesis 2024:10.1007/s10456-024-09938-4. [PMID: 39060773 DOI: 10.1007/s10456-024-09938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
As a vital component of blood vessels, endothelial cells play a key role in maintaining overall physiological function by residing between circulating blood and semi-solid tissue. Various stress stimuli can induce endothelial injury, leading to the onset of corresponding diseases in the body. In recent years, the importance of mitochondria in vascular endothelial injury has become increasingly apparent. Mitochondria, as the primary site of cellular aerobic respiration and the organelle for "energy information transfer," can detect endothelial cell damage by integrating and receiving various external stress signals. The generation of reactive oxygen species (ROS) and mitochondrial dysfunction often determine the evolution of endothelial cell injury towards necrosis or apoptosis. Therefore, mitochondria are closely associated with endothelial cell function, helping to determine the progression of clinical diseases. This article comprehensively reviews the interconnection and pathogenesis of mitochondrial-induced vascular endothelial cell injury in cardiovascular diseases, renal diseases, pulmonary-related diseases, cerebrovascular diseases, and microvascular diseases associated with diabetes. Corresponding therapeutic approaches are also provided. Additionally, strategies for using clinical drugs to treat vascular endothelial injury-based diseases are discussed, aiming to offer new insights and treatment options for the clinical diagnosis of related vascular injuries.
Collapse
Affiliation(s)
- Boxian Pang
- Beijing University of Chinese Medicine, Beijing, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | | | - Tieliang Pang
- Beijing Anding hospital, Capital Medical University, Beijing, China
| | - Xinyao Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Xin Liu
- Bioscience Department, University of Nottingham, Nottingham, UK
| | - Yifeng Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiagge, Xicheng District, Beijing, China.
| |
Collapse
|
2
|
Yu S, Klomjit N, Jiang K, Zhu XY, Ferguson CM, Conley SM, Obeidat Y, Kellogg TA, McKenzie T, Heimbach JK, Lerman A, Lerman LO. Human Obesity Attenuates Cardioprotection Conferred by Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells. J Cardiovasc Transl Res 2023; 16:221-232. [PMID: 35616881 DOI: 10.1007/s12265-022-10279-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022]
Abstract
To explore the impact of obesity on reparative potency of adipose tissue-derived mesenchymal stromal/stem cells (A-MSC) in hypertensive cardiomyopathy, A-MSC were harvested from subcutaneous fat of obese and age-matched non-obese human subjects during bariatric or kidney donation surgeries, and then injected into mice 2 weeks after inducing renovascular hypertension (RVH) or sham surgery. Two weeks later, left ventricular (LV) function and deformation were estimated in vivo by micro-magnetic resonance imaging and myocardial damage ex vivo. Blood pressure and myocardial wall thickening were elevated in RVH + Vehicle and normalized only by lean-A-MSC. Both A-MSC types reduced LV mass and normalized the reduced LV peak strain radial in RVH, yet obese-A-MSC also impaired LV systolic function. A-MSC alleviated myocardial tissue damage in RVH, but lean-A-MSC decreased oxidative stress more effectively. Obese-A-MSC also showed increased cellular inflammation in vitro. Therefore, obese-A-MSC are less effective than lean-A-MSC in blunting hypertensive cardiomyopathy in mice with RVH.
Collapse
Affiliation(s)
- Shasha Yu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Nattawat Klomjit
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Xiang Y Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Christopher M Ferguson
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Yasin Obeidat
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | | | | | | | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Bakis H, Trimouille A, Vermorel A, Goizet C, Belaroussi Y, Schutz S, Solé G, Combe C, Martin-Negrier ML, Rigothier C. Renal involvement is frequent in adults with primary mitochondrial disorders: an observational study. Clin Kidney J 2022; 16:100-110. [PMID: 36726431 PMCID: PMC9871853 DOI: 10.1093/ckj/sfac195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background Mitochondrial functions are controlled by genes of both mitochondrial and nuclear DNA. Pathogenic variants affecting any of these are responsible for primary mitochondrial disorders (MIDs), which can be diagnosed during adulthood. Kidney functions are highly dependent on mitochondrial respiration. However, the prevalence of MID-associated nephropathies (MIDANs) is unknown in the adult population. We aimed to address this point and to provide a full characterization of MIDANs in this population. Methods We retrospectively included for observational study adults (≥16 years of age) with genetically diagnosed MID between 2000 and 2020 in our tertiary care academic centre when they had a chronic kidney disease (CKD) evaluation. MIDANs were ascertained by CKD occurring in MIDs. The phenotypic, biological, histopathological and genotypic characteristics were recorded from the medical charts. Results We included 80 MID-affected adults and ascertained MIDANs in 28/80 (35%). Kidney diseases under the care of a nephrologist occurred in only 14/28 (50%) of the adults with MIDAN. MIDANs were tubulointerstitial nephropathy in 14/28 patients (50%) and glomerular diseases in 9/28 (32.1%). In adults with MID, MIDAN was negatively associated with higher albumin levels {odds ratio [OR] 0.79 [95% confidence interval (CI) 0.67-0.95]} and vision abnormalities [OR 0.17 (95% CI 0.03-0.94)] and positively associated with hypertension [OR 4.23 (95% CI 1.04-17.17)]. Conclusion MIDANs are frequent among adult MIDs. They are mostly represented by tubulointerstitial nephropathy or glomerular disease. Vision abnormalities, hypertension and albumin levels were independently associated with MIDANs. Our results pave the way for prospective studies investigating the prevalence of MIDANs among undetermined kidney disease populations.
Collapse
Affiliation(s)
| | - Aurélien Trimouille
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France,Université de Bordeaux, INSERM U1211, Bordeaux, France
| | - Agathe Vermorel
- CHU de Bordeaux, Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Bordeaux, France,CHU de Bordeaux, Service de Pathologie, Bordeaux, France
| | - Cyril Goizet
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France,CHU de Bordeaux, Centre de Référence pour les Maladies Mitochondriales de l’Enfant à l’Adulte (CARAMMEL), Bordeaux, France,Université de Bordeaux, INSERM U1211, Bordeaux, France
| | - Yaniss Belaroussi
- Université de Bordeaux, INSERM, Bordeaux Population Health Center, ISPED, Bordeaux, France,CHU de Bordeaux, Bordeaux, France,Institut Bergonié, INSERM CIC1401, Clinical and Epidemiological Research Unit, Bordeaux, France
| | - Sacha Schutz
- CHU de Brest, Laboratoire de Génétique Moléculaire, Brest, France,Université de Brest, INSERM, EFS, UMR1078, GGB, Brest, France
| | - Guilhem Solé
- CHU de Bordeaux, Département de Neurologie, Unité Nerf-Muscle, Bordeaux, France,CHU de Bordeaux, AOC National Reference Center for Neuromuscular Disorders, Bordeaux, France
| | - Christian Combe
- CHU de Bordeaux, Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Bordeaux, France,Tissue Bioengineering, U1026, INSERM, Bordeaux, France
| | - Marie-Laure Martin-Negrier
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France,CHU de Bordeaux, Centre de Référence pour les Maladies Mitochondriales de l’Enfant à l’Adulte (CARAMMEL), Bordeaux, France,Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Claire Rigothier
- CHU de Bordeaux, Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Bordeaux, France,CHU de Bordeaux, Centre de Référence pour les Maladies Mitochondriales de l’Enfant à l’Adulte (CARAMMEL), Bordeaux, France,Tissue Bioengineering, U1026, INSERM, Bordeaux, France
| |
Collapse
|
4
|
Luo S, Yang M, Zhao H, Han Y, Liu Y, Xiong X, Chen W, Li C, Sun L. Mitochondrial DNA-dependent inflammation in kidney diseases. Int Immunopharmacol 2022; 107:108637. [DOI: 10.1016/j.intimp.2022.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/15/2022]
|
5
|
Zhang X, Du J, Li B, Huo S, Zhang J, Cui Y, Song M, Shao B, Li Y. PINK1/Parkin-mediated mitophagy mitigates T-2 toxin-induced nephrotoxicity. Food Chem Toxicol 2022; 164:113078. [PMID: 35489469 DOI: 10.1016/j.fct.2022.113078] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022]
Abstract
T-2 toxin can cause mitochondrial impairment and subsequent renal damage. PINK1/Parkin-mediated mitophagy can mitigate renal impairment by alleviating mitochondrial damage. Nevertheless, the impact of PINK1/Parkin-mediated mitophagy in T-2 toxin-induced renal injury remains unclear. Here, we studied the role of PINK1/Parkin-mediated mitophagy in T-2 toxin-induced nephrotoxicity. Mitochondrial damage was accompanied by NLRP3-inflammasome activation and PINK1/Parkin-mediated mitophagy in the kidney of T-2 toxin-exposed C57BL/6N mice. Knocking out Parkin inhibited the mitophagy but aggravated the structural and functional damage, NLRP3-inflammasome activation, mitochondrial damage, and apoptosis. Correlation analysis revealed that NLRP3-inflammasome activation was correlated with apoptosis. These results show that PINK1/Parkin-mediated mitophagy mitigates T-2 toxin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Emergent players in renovascular disease. Clin Sci (Lond) 2022; 136:239-256. [PMID: 35129198 DOI: 10.1042/cs20210509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
Renovascular disease (RVD) remains a common etiology of secondary hypertension. Recent clinical trials revealed unsatisfactory therapeutic outcomes of renal revascularization, leading to extensive investigation to unravel key pathophysiological mechanisms underlying irreversible functional loss and structural damage in the chronically ischemic kidney. Research studies identified complex interactions among various players, including inflammation, fibrosis, mitochondrial injury, cellular senescence, and microvascular remodeling. This interplay resulted in a shift of our understanding of RVD from a mere hemodynamic disorder to a pro-inflammatory and pro-fibrotic pathology strongly influenced by systemic diseases like metabolic syndrome (MetS), hypertension, diabetes mellitus, and hyperlipidemia. Novel diagnostic approaches have been tested for early detection and follow-up of RVD progression, using new imaging techniques and biochemical markers of renal injury and dysfunction. Therapies targeting some of the pathological pathways governing the development of RVD have shown promising results in animal models, and a few have moved from bench to clinical research. This review summarizes evolving understanding in chronic ischemic kidney injury.
Collapse
|