1
|
Cheng Y, Lin L, Huang P, Zhang J, Wang Y, Pan X. Hypotension with neurovascular changes and cognitive dysfunction: An epidemiological, pathobiological, and treatment review. Chin Med J (Engl) 2025; 138:405-418. [PMID: 38785189 PMCID: PMC11845194 DOI: 10.1097/cm9.0000000000003103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT Hypotension is a leading cause of age-related cognitive impairment. The available literature evidences that vascular factors are associated with dementia and that hypotension alters cerebral perfusion flow and can aggravate the neurodegeneration of Alzheimer's disease (AD). Despite the discovery of biomarkers and the recent progress made in neurovascular biology, epidemiology, and brain imaging, some key issues remain largely unresolved: the potential mechanisms underlying the neural deterioration observed in AD, the effect of cerebrovascular alterations on cognitive deficits, and the positive effects of hypotension treatment on cognition. Therefore, further well-designed studies are needed to unravel the potential association between hypotension and cognitive dysfunction and reveal the potential benefits of hypotension treatment for AD patients. Here, we review the current epidemiological, pathobiological, and treatment-related literature on neurovascular changes and hypotension-related cognitive dysfunction and highlight the unsettled but imminent issues that warrant future research endeavors.
Collapse
Affiliation(s)
- Yingzhe Cheng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Lin Lin
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Peilin Huang
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jiejun Zhang
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Center for Geriatrics, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Yanping Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
2
|
Gurholt TP, Elvsåshagen T, Bahrami S, Rahman Z, Shadrin A, Askeland-Gjerde DE, van der Meer D, Frei O, Kaufmann T, Sønderby IE, Halvorsen S, Westlye LT, Andreassen OA. Large-scale brainstem neuroimaging and genetic analyses provide new insights into the neuronal mechanisms of hypertension. HGG ADVANCES 2025; 6:100392. [PMID: 39663699 PMCID: PMC11731578 DOI: 10.1016/j.xhgg.2024.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
While brainstem regions are central regulators of blood pressure, the neuronal mechanisms underlying their role in hypertension remain poorly understood. Here, we investigated the structural and genetic relationships between global and regional brainstem volumes and blood pressure. We used magnetic resonance imaging data from n = 32,666 UK Biobank participants, and assessed the association of volumes of the whole brainstem and its main regions with blood pressure. We applied powerful statistical genetic tools, including bivariate causal mixture modeling (MiXeR) and conjunctional false discovery rate (conjFDR), to non-overlapping genome-wide association studies of brainstem volumes (n = 27,034) and blood pressure (n = 321,843) in the UK Biobank cohort. We observed negative associations between the whole brainstem and medulla oblongata volumes and systolic blood and pulse pressure, and positive relationships between midbrain and pons volumes and blood pressure traits when adjusting for the whole brainstem volume (all partial correlation coefficients ∣r∣ effects between 0.03 and 0.05, p ≤ 0.0042). We observed the largest genetic overlap for the whole brainstem, sharing 77% of its trait-influencing variants with blood pressure. We identified 65 shared loci between brainstem volumes and blood pressure traits and mapped these to 71 genes, implicating molecular pathways linked to sympathetic nervous system development, metal ion transport, and vascular homeostasis. The present findings support a link between brainstem structures and blood pressure and provide insights into their shared genetic underpinnings. The overlapping genetic architectures and mapped genes offer mechanistic information about the roles of brainstem regions in hypertension.
Collapse
Affiliation(s)
- Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway.
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway; Department of Behavioural Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Shahram Bahrami
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Zillur Rahman
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Alexey Shadrin
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Daniel E Askeland-Gjerde
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, Germany
| | - Ida E Sønderby
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Sigrun Halvorsen
- Department of Cardiology, Oslo University Hospital Ullevål and University of Oslo, 0424 Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway; Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| |
Collapse
|
3
|
Alateeq K, Walsh EI, Cherbuin N. High Blood Pressure and Impaired Brain Health: Investigating the Neuroprotective Potential of Magnesium. Int J Mol Sci 2024; 25:11859. [PMID: 39595928 PMCID: PMC11594239 DOI: 10.3390/ijms252211859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
High blood pressure (BP) is a significant contributor to the disease burden globally and is emerging as an important cause of morbidity and mortality in the young as well as the old. The well-established impact of high BP on neurodegeneration, cognitive impairment, and dementia is widely acknowledged. However, the influence of BP across its full range remains unclear. This review aims to explore in more detail the effects of BP levels on neurodegeneration, cognitive function, and dementia. Moreover, given the pressing need to identify strategies to reduce BP levels, particular attention is placed on reviewing the role of magnesium (Mg) in ageing and its capacity to lower BP levels, and therefore potentially promote brain health. Overall, the review aims to provide a comprehensive synthesis of the evidence linking BP, Mg and brain health. It is hoped that these insights will inform the development of cost-effective and scalable interventions to protect brain health in the ageing population.
Collapse
Affiliation(s)
- Khawlah Alateeq
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 2601, Australia; (K.A.); (E.I.W.)
- Radiological Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Erin I. Walsh
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 2601, Australia; (K.A.); (E.I.W.)
| | - Nicolas Cherbuin
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 2601, Australia; (K.A.); (E.I.W.)
| |
Collapse
|
4
|
Santillo E, Balietti M, Fabbietti P, Antolini MS, Paoloni C, Piacenza F, Giuli C. Association between low values of mean arterial pressure and impaired cognitive performance in older patients with mild cognitive impairment: cross-sectional preliminary findings from the STRENGTH Project. Aging Clin Exp Res 2024; 36:9. [PMID: 38281243 PMCID: PMC10822812 DOI: 10.1007/s40520-023-02668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Uncontrolled blood pressure (BP) is a risk factor for Mild Cognitive Impairment (MCI) and dementia. AIMS This study examined the relationship between BP and clinical/cognitive/neuropsychological aspects in MCI individuals. METHODS MCI patients underwent clinical, functional, cognitive and metacognitive, as well as psychological assessments. Social network, lifestyle characteristics, and medication prescriptions were also evaluated. Each patient underwent BP measurements. RESULTS Lower values of systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP) were associated with poorer cognitive performance. Notably, MAP showed greater capability in detecting impairments in attention and visuospatial abilities compared to SBP and DBP. DISCUSSION These findings support the notion that in older individuals with MCI excessively low BP values, particularly MAP, might represent a risk and suggest that cerebral hypoperfusion may play a key role. CONCLUSIONS Routine assessment of MAP could aid clinicians in adjusting antihypertensive treatment and closely monitoring cognitive function in MCI patients.
Collapse
Affiliation(s)
| | - Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy.
| | - Paolo Fabbietti
- Centre for Biostatistic and Applied Geriatric Clinical Epidemiology, IRCCS INRCA, Ancona, Italy
| | | | | | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Cinzia Giuli
- Geriatric Operative Unit, IRCCS INRCA, Fermo, Italy
| |
Collapse
|
5
|
Sundar U, Mukhopadhyay A, Raghavan S, Debata I, Menon RN, Kesavadas C, Shah N, Adsul BB, Joshi AR, Tejas J. Evaluation of 'Normal' Cognitive Functions and Correlation With MRI Volumetry: Towards a Definition of Vascular Cognitive Impairment. Cureus 2023; 15:e49461. [PMID: 38152804 PMCID: PMC10751464 DOI: 10.7759/cureus.49461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction It is important to establish criteria to define vascular cognitive impairment (VCI) in India as VCI is an image-based diagnosis and magnetic resonance imaging (MRI) changes resulting from age with prevalent vascular risk factors may confound MRI interpretation. The objective of this study was to establish normative community data for MRI volumetry including white matter hyperintensity volume (WMHV), correlated with age-stratified cognitive scores and vascular risk factors (VRFs), in adults aged 40 years and above. Methods We screened 2651 individuals without known neurological morbidity, living in Mumbai and nearby rural areas, using validated Marathi translations of Kolkata Cognitive Battery (KCB) and geriatric depression score (GDS). We stratified 1961 persons with GDS ≤9 by age and cognitive score, and randomly selected 10% from each subgroup for MRI brain volumetry. Crude volumes were standardized to reflect percentage of intracranial volume. Results MRI volumetry studies were done in 199 individuals (F/M = 90/109; 73 with body mass index (BMI) ≥25; 44 hypertensives; 29 diabetics; mean cognitive score 76.3). Both grey and white matter volumes decreased with increasing age. WMHV increased with age and hypertension. Grey matter volume (GMV) decreased with increasing WMHV. Positive predictors of cognition included standardized hippocampal volume (HCV), urban living, education, and BMI, while WMHV and age were negative predictors. Urban dwellers had higher cognitive scores than rural, and, paradoxically, smaller HCV. Conclusion In this study of MRI volumetry correlated with age, cognitive scores and VRFs, increasing age and WMHV predicted lower cognitive scores, whereas urban living and hippocampal volume predicted higher scores. Age and WMHV also correlated with decreasing GMV. Further study is warranted into sociodemographic and biological factors that mutually influence cognition and brain volumes, including nutritional and endocrine factors, especially at lower cognitive score bands. In this study, at the lower KCB score bins, the lack of laboratory data pertaining to nutritional and endocrine deficiencies is a drawback that reflects the logistical limitations of screening large populations at the community level. Our volumetric data which is age and cognition stratified, and takes into account the vascular risk factors associated, nevertheless constitutes important baseline data for the Indian population. Our findings could possibly contribute to the formulation of baseline criteria for defining VCI in India and could help in early diagnosis and control of cognitive decline and its key risk factors.
Collapse
Affiliation(s)
- Uma Sundar
- Department of Medicine, Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai, IND
| | - Amita Mukhopadhyay
- Department of Hospital and Health Management, Institute of Health Management Research Bangalore, Bengaluru, IND
| | - Sheelakumari Raghavan
- Department of Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, IND
| | - Ipsita Debata
- Department of Community and Family Medicine, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Ramshekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, IND
| | - Chandrasekharan Kesavadas
- Department of Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, IND
| | - Nilesh Shah
- Department of Psychiatry, Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai, IND
| | - Balkrishna B Adsul
- Department of Community Medicine, Hinduhrudaysamrat Balasaheb Thackarey Medical College and Dr RN Cooper Municipal General Hospital, Mumbai, IND
| | - Anagha R Joshi
- Department of Radiology, Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai, IND
| | - Janardhan Tejas
- Department of Forensic Medicine and Toxicology, Karpaga Vinayaga Institute of Medical Sciences and Research Center, Chengalpattu, IND
| |
Collapse
|
6
|
Ye Z, Mo C, Liu S, Gao S, Feng L, Zhao B, Canida T, Wu YC, Hatch KS, Ma Y, Mitchell BD, Hong L, Kochunov P, Chen C, Zhao B, Chen S, Ma T. Deciphering the causal relationship between blood pressure and regional white matter integrity: A two-sample Mendelian randomization study. J Neurosci Res 2023; 101:1471-1483. [PMID: 37330925 PMCID: PMC10444533 DOI: 10.1002/jnr.25205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Elevated arterial blood pressure (BP) is a common risk factor for cerebrovascular and cardiovascular diseases, but no causal relationship has been established between BP and cerebral white matter (WM) integrity. In this study, we performed a two-sample Mendelian randomization (MR) analysis with individual-level data by defining two nonoverlapping sets of European ancestry individuals (genetics-exposure set: N = 203,111; mean age = 56.71 years, genetics-outcome set: N = 16,156; mean age = 54.61 years) from UK Biobank to evaluate the causal effects of BP on regional WM integrity, measured by fractional anisotropy of diffusion tensor imaging. Two BP traits: systolic and diastolic blood pressure were used as exposures. Genetic variant was carefully selected as instrumental variable (IV) under the MR analysis assumptions. We existing large-scale genome-wide association study summary data for validation. The main method used was a generalized version of inverse-variance weight method while other MR methods were also applied for consistent findings. Two additional MR analyses were performed to exclude the possibility of reverse causality. We found significantly negative causal effects (FDR-adjusted p < .05; every 10 mmHg increase in BP leads to a decrease in FA value by .4% ~ 2%) of BP traits on a union set of 17 WM tracts, including brain regions related to cognitive function and memory. Our study extended the previous findings of association to causation for regional WM integrity, providing insights into the pathological processes of elevated BP that might chronically alter the brain microstructure in different regions.
Collapse
Affiliation(s)
- Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Chen Mo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Li Feng
- Department of Nutrition and Food Science, College of Agriculture & Natural Resources, University of Maryland, College Park, Maryland, United States of America
| | - Boao Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, United States of America
| | - Travis Canida
- Department of Mathematics, The college of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Yu-Chia Wu
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, United States of America
| | - Kathryn S Hatch
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - L.Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Bingxin Zhao
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
7
|
Iluț S, Vesa ŞC, Văcăraș V, Brăiță L, Dăscălescu VC, Fantu I, Mureșanu DF. Biological Risk Factors Influencing Vascular Cognitive Impairments: A Review of the Evidence. Brain Sci 2023; 13:1094. [PMID: 37509024 PMCID: PMC10377134 DOI: 10.3390/brainsci13071094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Vascular cognitive impairment encompasses several types of deficits, ranging from mild cognitive impairment to dementia. Cognitive reserve refers to the brain's ability to balance damage and improve performance through certain types of brain networks. The purpose of this review was to assess the relationship between reserve in vascular impairment, specifically looking at whether cognitive impairment is influenced by cognitive reserve, identifying significant vascular risk factors and their pathological pathways. To achieve this purpose, a review covering these issues was conducted within the Embase, Cochrane, and PubMed database. A total of 657 scientific articles were found, and 33 papers were considered for the final analysis. We concluded that there is no consensus on the protective effects of brain reserve on cognitive impairment. Stroke and diabetes can be considered significant risk factors for vascular cognitive impairment, while hypertension is not as damaging as blood pressure variability, which structurally alters the brain through a variety of mechanisms.
Collapse
Affiliation(s)
- Silvina Iluț
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Victor Babeş Street, 400012 Cluj-Napoca, Romania; (S.I.); (V.V.); (L.B.); (V.-C.D.); (I.F.); (D.-F.M.)
- Clinical Rehabilitation Hospital, 46-50 Viilor Street, 400347 Cluj-Napoca, Romania
| | - Ştefan Cristian Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Vitalie Văcăraș
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Victor Babeş Street, 400012 Cluj-Napoca, Romania; (S.I.); (V.V.); (L.B.); (V.-C.D.); (I.F.); (D.-F.M.)
- Clinical Rehabilitation Hospital, 46-50 Viilor Street, 400347 Cluj-Napoca, Romania
| | - Lavinia Brăiță
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Victor Babeş Street, 400012 Cluj-Napoca, Romania; (S.I.); (V.V.); (L.B.); (V.-C.D.); (I.F.); (D.-F.M.)
| | - Vlad-Constantin Dăscălescu
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Victor Babeş Street, 400012 Cluj-Napoca, Romania; (S.I.); (V.V.); (L.B.); (V.-C.D.); (I.F.); (D.-F.M.)
| | - Ioana Fantu
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Victor Babeş Street, 400012 Cluj-Napoca, Romania; (S.I.); (V.V.); (L.B.); (V.-C.D.); (I.F.); (D.-F.M.)
| | - Dafin-Fior Mureșanu
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Victor Babeş Street, 400012 Cluj-Napoca, Romania; (S.I.); (V.V.); (L.B.); (V.-C.D.); (I.F.); (D.-F.M.)
- Clinical Rehabilitation Hospital, 46-50 Viilor Street, 400347 Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, 37 Mircea Eliade Street, 400364 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Woldstad C, Rusinek H, Sweeney E, Butler T, Li Y, Tanzi E, Mardy C, Harvey P, de Leon MJ, Glodzik L. Quadratic relationship between systolic blood pressure and white matter lesions in individuals with hypertension. J Hypertens 2023; 41:35-43. [PMID: 36204999 PMCID: PMC9794123 DOI: 10.1097/hjh.0000000000003292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND There is a well documented relationship between cardiovascular risk factors and the development of brain injury, which can lead to cognitive dysfunction. Hypertension (HTN) is a condition increasing the risk of silent and symptomatic ischemic brain lesions. Although benefits of hypertension treatment are indisputable, the target blood pressure value where the possibility of tissue damage is most reduced remains under debate. METHOD Our group performed a cross-sectional ( n = 376) and longitudinal ( n = 188) study of individuals without dementia or stroke (60% women n = 228, age 68.5 ± 7.4 years; men n = 148, age 70.7 ± 6.9 years). Participants were split into hypertensive ( n = 169) and normotensive ( n = 207) groups. MR images were obtained on a 3T system. Linear modeling was performed in hypertensive and normotensive cohorts to investigate the relationship between systolic (SBP) and diastolic (DBP) blood pressure, white matter lesion (WML), and brain volumes. RESULTS Participants in the hypertensive cohort showed a quadratic relationship between SBP and WML, with the lowest amounts of WML being measured in participants with readings at approximately 124 mmHg. Additionally, the hypertensive cohort also exhibited a quadratic relationship between DBP and mean hippocampal volume; participants with readings at approximately 77 mmHg showing the largest volumes. Longitudinally, all groups experienced WML growth, despite different BP trajectories, further suggesting that WML expansion may occur despite or because of BP reduction in individuals with compromised vascular system. CONCLUSION Overall, our study suggests that in the hypertensive group there is a valley of mid-range blood pressures displaying less pathology in the brain.
Collapse
Affiliation(s)
| | | | - Elizabeth Sweeney
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine
| | - Tracy Butler
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine
| | - Yi Li
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine
| | - Emily Tanzi
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine
| | - Christopher Mardy
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine
| | - Patrick Harvey
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine
| | - Mony J. de Leon
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine
| | - Lidia Glodzik
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine
- Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Kennedy KG, Grigorian A, Mitchell RHB, McCrindle BW, MacIntosh BJ, Goldstein BI. Association of blood pressure with brain structure in youth with and without bipolar disorder. J Affect Disord 2022; 299:666-674. [PMID: 34920038 DOI: 10.1016/j.jad.2021.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/25/2021] [Accepted: 12/12/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND We previously found that blood pressure (BP) is elevated, and associated with poorer neurocognition, in youth with bipolar disorder (BD). While higher BP is associated with smaller brain structure in adults, studies have not examined this topic in BD or youth. METHODS Participants were 154 youth, ages 13-20 (n = 81 BD, n = 73 HC). Structural magnetic resonance imaging and diastolic (DBP), and systolic (SBP) pressure were obtained. Region of interest (ROI; anterior cingulate cortex [ACC], insular cortex, hippocampus) and vertex-wise analyses controlling for age, sex, body-mass-index, and intracranial volume investigated BP-neurostructural associations; a group-by-BP interaction was also assessed. RESULTS In ROI analyses, higher DBP in the overall sample was associated with smaller insular cortex area (β=-0.18 p = 0.007) and was associated with smaller ACC area to a significantly greater extent in HC vs. BD (β=-0.14 p = 0.015). In vertex-wise analyses, higher DBP and SBP were associated with smaller area and volume in the insular cortex, frontal, parietal, and temporal regions in the overall sample. Additionally, higher SBP was associated with greater thickness in temporal and parietal regions. Finally, higher SBP was associated with smaller area and volume in frontal, parietal, and temporal regions to a significantly greater extent in BD vs. HC. LIMITATIONS Cross-sectional design, single assessment of BP. CONCLUSION BP is associated with brain structure in youth, with variability related to structural phenotype (volume vs. thickness) and psychiatric diagnosis (BD vs. HC). Future studies evaluating temporality of these findings, and the association of BP changes on brain structure in youth, are warranted.
Collapse
Affiliation(s)
- Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Rm 4326, 100 stokes street Way, Toronto, ON M6J 1H4, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Rm 4326, 100 stokes street Way, Toronto, ON M6J 1H4, Canada
| | - Rachel H B Mitchell
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Brian W McCrindle
- Division of Pediatric Cardiology, Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Rm 4326, 100 stokes street Way, Toronto, ON M6J 1H4, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Olivo G, Nilsson J, Garzón B, Lebedev A, Wåhlin A, Tarassova O, Ekblom M, Lövdén M. Immediate effects of a single session of physical exercise on cognition and cerebral blood flow: A randomized controlled study of older adults. Neuroimage 2020; 225:117500. [PMID: 33169699 DOI: 10.1016/j.neuroimage.2020.117500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Regular physical activity is beneficial for cognitive performance in older age. A single bout of aerobic physical exercise can transiently improve cognitive performance. Researchers have advanced improvements in cerebral circulation as a mediator of long-term effects of aerobic physical exercise on cognition, but the immediate effects of exercise on cognition and cerebral perfusion are not well characterized and the effects in older adults are largely unknown. METHODS Forty-nine older adults were randomized to a 30-min aerobic exercise at moderate intensity or relaxation. Groups were matched on age and cardiovascular fitness (VO2 max). Average Grey Matter Blood Flow (GMBF), measured by a pulsed arterial-spin labeling (pASL) magnetic resonance imaging (MRI) acquisition, and working memory performance, measured by figurative n-back tasks with increasing loads were assessed before and 7 min after exercising/resting. RESULTS Accuracy on the n-back task increased from before to after exercising/resting regardless of the type of activity. GMBF decreased after exercise, relative to the control (resting) group. In the exercise group, higher n-back performance after exercise was associated with lower GMBF in the right hippocampus, left medial frontal cortex and right orbitofrontal cortex, and higher cardiovascular fitness was associated with lower GMBF. CONCLUSION The decrease of GMBF reported in younger adults shortly after exercise also occurs in older adults and relates to cardiovascular fitness, potentially supporting the link between cardiovascular fitness and cerebrovascular reactivity in older age.
Collapse
Affiliation(s)
- Gaia Olivo
- Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Tomtebodavägen 18A, 171 65 Stockholm, Sweden.
| | - Jonna Nilsson
- Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Tomtebodavägen 18A, 171 65 Stockholm, Sweden; The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Benjamín Garzón
- Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Tomtebodavägen 18A, 171 65 Stockholm, Sweden; Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Alexander Lebedev
- Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Tomtebodavägen 18A, 171 65 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Olga Tarassova
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Maria Ekblom
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden; Department of Neuroscience, Karolinska Institute, Stockhom, Sweden
| | - Martin Lövdén
- Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Tomtebodavägen 18A, 171 65 Stockholm, Sweden; Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Jennings JR, Muldoon MF, Allen B, Ginty AT, Gianaros PJ. Cerebrovascular function in hypertension: Does high blood pressure make you old? Psychophysiology 2020; 58:e13654. [PMID: 32830869 DOI: 10.1111/psyp.13654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022]
Abstract
The majority of individuals over an age of 60 have hypertension. Elevated blood pressure and older age are associated with very similar changes in brain structure and function. We review the parallel brain changes associated with increasing age and blood pressure. This review focuses on joint associations of aging and elevated blood pressure with neuropsychological function, regional cerebral blood flow responses to cognitive and metabolic challenges, white matter disruptions, grey matter volume, cortical thinning, and neurovascular coupling. Treatment of hypertension ameliorates many of these changes but fails to reverse them. Treatment of hypertension itself appears more successful with better initial brain function. We show evidence that sympathetic and renal influences known to increase blood pressure also impact brain integrity. Possible central mechanisms contributing to the course of hypertension and aging are then suggested. An emphasis is placed on psychologically relevant factors: stress, cardiovascular reactions to stress, and diet/obesity. The contribution of some of these factors to biological aging remains unclear and may provide a starting point for defining the independent and interacting effects of aging and increasing blood pressure on the brain.
Collapse
Affiliation(s)
- J Richard Jennings
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew F Muldoon
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ben Allen
- Department of Psychology, University of Tennessee, Knoxville, TN, USA
| | - Annie T Ginty
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Cerebellar Grey Matter Volume in Older Persons Is Associated with Worse Cognitive Functioning. THE CEREBELLUM 2020; 20:9-20. [PMID: 32816194 DOI: 10.1007/s12311-020-01148-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The cerebellum is increasingly recognised for its role in modulation of cognition, behaviour, and affect. The present study examined the relation between structural cerebellar damage (grey matter volume (GMV), white matter hyperintensities (WMHs), lacunar infarcts (LIs) and microbleeds (MBs)) and measures of cognitive, psychological (i.e. symptoms of depression and apathy) and general daily functioning in a population of community-dwelling older persons with mild cognitive deficits, but without dementia. In 194 participants of the Discontinuation of Antihypertensive Treatment in Elderly People (DANTE) Study Leiden, the association between cerebellar GMV, WMHs, LIs and MBs and measures of cognitive, psychological and general daily functioning was analysed with linear regression analysis, adjusted for age, sex, education and cerebral volume. Cerebellar GMV was associated with the overall cognition score (standardised beta 0.20 [95% CI, 0.06-0.33]). Specifically, posterior cerebellar GMV was associated with executive function (standardised beta 0.18 [95% CI, 0.03-0.16]). No relation was found between vascular pathology and cognition. Also, no consistent associations were found on the cerebellar GMV and vascular pathology measures and psychological and general daily functioning. In this population of community-dwelling elderly, less posterior cerebellar GMV but not vascular pathology was associated with worse cognitive function, specifically with poorer executive function. No relation was found between cerebellar pathology and psychological and general daily functioning.
Collapse
|
13
|
Abstract
PURPOSE To review the recent developments on the effect of chronic high mean arterial blood pressure (MAP) on cerebral blood flow (CBF) autoregulation and supporting the notion that CBF autoregulation impairment has connection with chronic cerebral diseases. Method: A narrative review of all the relevant papers known to the authors was conducted. Results: Our understanding of the connection between cerebral perfusion impairment and chronic high MAP and cerebral disease is rapidly evolving, from cerebral perfusion impairment being the result of cerebral diseases to being the cause of cerebral diseases. We now better understand the intertwined impact of hypertension and Alzheimer's disease (AD) on cerebrovascular sensory elements and recognize cerebrovascular elements that are more vulnerable to these diseases. Conclusion: We conclude with the suggestion that the sensory elements pathology plays important roles in intertwined mechanisms of chronic high MAP and AD that impact cerebral perfusion.
Collapse
Affiliation(s)
- Noushin Yazdani
- College of Public Health, University of South Florida , Tampa, FL, USA
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida , Tampa, FL, USA.,Biomedical Research, James A. Haley VA Medical Center , Tampa, FL, USA
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida , Tampa, FL, USA.,Byrd Neuroscience Institute, University of South Florida , Tampa, FL, USA
| |
Collapse
|
14
|
Bertens AS, Foster-Dingley JC, van der Grond J, Moonen JEF, van der Mast RC, Rius Ottenheim N. Lower Blood Pressure, Small-Vessel Disease, and Apathy in Older Persons With Mild Cognitive Deficits. J Am Geriatr Soc 2020; 68:1811-1817. [PMID: 32353168 PMCID: PMC7496130 DOI: 10.1111/jgs.16465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND In older persons, both high and low blood pressure (BP) levels are associated with symptoms of apathy. Population characteristics, such as burden of cerebral small-vessel disease (CSVD), may underlie these apparently contradictory findings. We aimed to explore, in older persons, whether the burden of CSVD affects the association between BP and apathy. DESIGN Cross-sectional study. SETTING Primary care setting, the Netherlands. PARTICIPANTS Community-dwelling older persons (mean age = 80.7 years; SD = 4.1 years) with mild cognitive deficits and using antihypertensive treatment, participating in the baseline measurement of the magnetic resonance imaging substudy (n = 210) of the Discontinuation of Antihypertensive Treatment in the Elderly Study Leiden. MEASUREMENTS During home visits, BP was measured in a standardized way and apathy was assessed with the Apathy Scale (range = 0-42). Stratified linear regression analyses were performed according to the burden of CSVD. A higher burden of CSVD was defined as 2 or more points on a compound CSVD score (range = 0-3 points), defined as presence of white matter hyperintensities (greater than median), any lacunar infarct, and/or two or more microbleeds. RESULTS In the entire population, those with a lower systolic and those with a lower diastolic BP had more symptoms of apathy (β = -.35 [P = .01] and β = -.66 [P = .02], respectively). In older persons with a higher burden of CSVD (n = 50 [24%]), both lower systolic BP (β = -.64, P = .02) and lower diastolic BP (β = -1.6, P = .01) were associated with more symptoms of apathy, whereas no significant association was found between BP and symptoms of apathy in older persons with a lower burden of CSVD (n = 160). CONCLUSIONS Particularly in older persons with a higher burden of CSVD, lower BP was associated with more symptoms of apathy. Adequate BP levels for optimal psychological functioning may vary across older populations with a different burden of CSVD. J Am Geriatr Soc 68:1811-1817, 2020.
Collapse
Affiliation(s)
- Anne Suzanne Bertens
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Justine E F Moonen
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.,AMC Medical Research B.V., Amsterdam, The Netherlands
| | - Roos C van der Mast
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI)-University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
15
|
Li H, Sun D, Lu D, Zhang J, Zeng J. Low Hippocampal Dentate Gyrus Volume Associated With Hypertension-Related Cognitive Impairment. Am J Alzheimers Dis Other Demen 2020; 35:1533317520949782. [PMID: 33043683 PMCID: PMC10624078 DOI: 10.1177/1533317520949782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypertension increases the risk of cognitive impairment independent of detectable stroke or cerebral lesions. However, the principal pathophysiological basis of this increase has not been fully elucidated. The present study investigates the relationships among blood pressure, hippocampal subfields volume, and cognitive function in a relatively young non-stroke population. A total of 59 non-stroke non-dementia subjects (mean age, 57.2 ± 4.9 years) were enrolled. All subjects were subjected to complete assessment of vascular risk factors including 24-hour blood pressure monitoring, various neuropsychological tests, and 3D-T1 MR scan. Freesurfer V6.0 was used for segmentation of hippocampal subfields. Our analyses revealed that both 24-hour and daytime mean systolic blood pressure (SBP) were significantly associated with the low volume of the left DG. Higher coefficient of variation (CV) of daytime SBP was significantly associated with lower volume of the left Cornu Ammonis 4 and dentate gyrus (DG) region. Both higher CV of 24-hour mean SBP and daytime SBP were significantly associated with lower performance in both executive and linguistic function. The low volume of the left DG was significantly associated with the low performance in linguistic function. Our findings support that reduced DG volume and increased SBP variability associated with hypertension-related cognitive impairment.
Collapse
Affiliation(s)
- Huagang Li
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dong Sun
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongwei Lu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junjie Zeng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Wanleenuwat P, Iwanowski P, Kozubski W. Alzheimer's dementia: pathogenesis and impact of cardiovascular risk factors on cognitive decline. Postgrad Med 2019; 131:415-422. [PMID: 31424301 DOI: 10.1080/00325481.2019.1657776] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia manifesting as alterations in cognitive abilities, behavior, and deterioration in memory which is progressive, leading to gradual worsening of symptoms. Major pathological features of AD are accumulations of neuronal amyloid plaques and neurofibrillary tangles, with early lesions appearing primarily in the hippocampus, the area of the brain involved in memory and learning. Cardiovascular-related risk factors are believed to play a crucial role in disease development and the acceleration of cognitive deterioration by worsening cerebral perfusion, promoting disturbances in amyloid clearance. Current evidence supports hypertension, hypotension, heart failure, stroke and coronary artery diseases as potential factors playing a role in cognitive decline in patients with Alzheimer's dementia. Although dementia due to cardiovascular deficits is more strongly linked to the development of vascular dementia, a stepwise decline in cognition, recent researches have also discovered its deleterious influence on AD development.
Collapse
Affiliation(s)
- Pitchaya Wanleenuwat
- Department of Neurology, Poznan University of Medical Sciences , Poznan , Poland
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences , Poznan , Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences , Poznan , Poland
| |
Collapse
|
17
|
Orthostatic hypotension in older persons is not associated with cognitive functioning, features of cerebral damage or cerebral blood flow. J Hypertens 2019; 36:1201-1206. [PMID: 29373479 DOI: 10.1097/hjh.0000000000001681] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Particularly in old age, orthostatic hypotension has been related to worse cognitive functioning, possibly caused by reduced cerebral blood flow (CBF). This study investigates whether orthostatic hypotension in older people is associated with cognitive dysfunction and, if so, whether this association is mediated by cerebral vascular damage and/or decreased CBF. METHODS Four hundred and twenty participants of the Discontinuation of ANtihypertensive Treatment in Elderly People (DANTE) Study Leiden (mean age 81 years, all using antihypertensive medication and with mild cognitive deficits), and MRI data from 214 participants of the nested DANTE MRI sub-study. Orthostatic hypotension was defined as either a SBP decrease at least 20 mmHg and/or a DBP decrease of at least 10 mmHg within 3 min of standing up. Cognitive functioning was assessed using a battery of six cognitive tests covering global cognition, memory function, executive function and psychomotor speed. Cerebral vascular damage and CBF were assessed using MRI. RESULTS The prevalence of orthostatic hypotension was 47% (n = 199). Compared with the group without orthostatic hypotension, participants with orthostatic hypotension showed no differences in any of the cognitive functions, features of cerebral small vessel disease, microstructural integrity or CBF. CONCLUSION In this population of older persons, the presence of orthostatic hypotension was not associated with decreased cognition. In addition, no differences were found in the supposedly underlying cerebral vascular mechanisms.
Collapse
|
18
|
Abstract
The number of adults with Alzheimer’s disease (AD) or related dementia is expected to increase exponentially. Interventions aimed to reduce the risk and progression of AD and dementia are critical to the prevention and treatment of this devastating disease. Aging and cardiovascular disease risk factors are associated with reduced vascular function, which can have important clinical implications, including brain health. The age-associated increase in blood pressure and impairment in vascular function may be attenuated or even reversed through lifestyle behaviors. Greater volumes of habitual exercise and higher cardiorespiratory fitness are associated with beneficial effects on vascular health and cognition. Exercise and cardiorespiratory fitness may be most important during midlife, as physical activity and cardiorespiratory fitness during the middle-aged years are associated with future cognitive function. The extent to which exercise, and more specifically aerobic exercise, influences the cerebral circulation is not well established. In this review, we present our working hypothesis showing how cerebrovascular function may be a mediating factor underlying the association between exercise and cognition, as well as discuss recent studies evaluating the effect of exercise interventions on the cerebral circulation.
Collapse
Affiliation(s)
- Jill N Barnes
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, USA.,Department of Medicine, Division of Geriatrics and Gerontology, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam T Corkery
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Foster KR, Ziskin MC, Balzano Q, Bit-Babik G. Modeling Tissue Heating From Exposure to Radiofrequency Energy and Relevance of Tissue Heating to Exposure Limits: Heating Factor. HEALTH PHYSICS 2018; 115:295-307. [PMID: 29957690 DOI: 10.1097/hp.0000000000000854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This review/commentary addresses recent thermal and electromagnetic modeling studies that use image-based anthropomorphic human models to establish the local absorption of radiofrequency energy and the resulting increase in temperature in the body. The frequency range of present interest is from 100 MHz through the transition frequency (where the basic restrictions in exposure guidelines change from specific absorption rate to incident power density, which occurs at 3-10 GHz depending on the guideline). Several detailed thermal modeling studies are reviewed to compare a recently introduced dosimetric quantity, the heating factor, across different exposure conditions as related to the peak temperature rise in tissue that would be permitted by limits for local body exposure. The present review suggests that the heating factor is a robust quantity that is useful for normalizing exposures across different simulation models. Limitations include lack of information about the location in the body where peak absorption and peak temperature increases occur in each exposure scenario, which are needed for careful assessment of potential hazards. To the limited extent that comparisons are possible, the thermal model (which is based on Pennes' bioheat equation) agrees reasonably well with experimental data, notwithstanding the lack of theoretical rigor of the model and uncertainties in the model parameters. In particular, the blood flow parameter is both variable with physiological condition and largely determines the steady state temperature rise. We suggest an approach to define exposure limits above and below the transition frequency (the frequency at which the basic restriction changes from specific absorption rate to incident power density) to provide consistent levels of protection against thermal hazards. More research is needed to better validate the model and to improve thermal dosimetry in general. While modeling studies have considered the effects of variation in thickness of tissue layers, the effects of normal physiological variation in tissue blood flow have been relatively unexplored.
Collapse
Affiliation(s)
- Kenneth R Foster
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104
| | - Marvin C Ziskin
- Temple University Medical School, 3420 N. Broad Street, Philadelphia, PA 19140
| | - Quirino Balzano
- Department of Electrical and Computer Engineering, University of Maryland, College Park MD 20742
| | - Giorgi Bit-Babik
- Chief Technology Office, Motorola Solutions, Inc., Fort Lauderdale, FL 33322
| |
Collapse
|
20
|
Walker KA, Power MC, Gottesman RF. Defining the Relationship Between Hypertension, Cognitive Decline, and Dementia: a Review. Curr Hypertens Rep 2017; 19:24. [PMID: 28299725 DOI: 10.1007/s11906-017-0724-3] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypertension is a highly prevalent condition which has been established as a risk factor for cardiovascular and cerebrovascular disease. Although the understanding of the relationship between cardiocirculatory dysfunction and brain health has improved significantly over the last several decades, it is still unclear whether hypertension constitutes a potentially treatable risk factor for cognitive decline and dementia. While it is clear that hypertension can affect brain structure and function, recent findings suggest that the associations between blood pressure and brain health are complex and, in many cases, dependent on factors such as age, hypertension chronicity, and antihypertensive medication use. Whereas large epidemiological studies have demonstrated a consistent association between high midlife BP and late-life cognitive decline and incident dementia, associations between late-life blood pressure and cognition have been less consistent. Recent evidence suggests that hypertension may promote alterations in brain structure and function through a process of cerebral vessel remodeling, which can lead to disruptions in cerebral autoregulation, reductions in cerebral perfusion, and limit the brain's ability to clear potentially harmful proteins such as β-amyloid. The purpose of the current review is to synthesize recent findings from epidemiological, neuroimaging, physiological, genetic, and translational research to provide an overview of what is currently known about the association between blood pressure and cognitive function across the lifespan. In doing so, the current review also discusses the results of recent randomized controlled trials of antihypertensive therapy to reduce cognitive decline, highlights several methodological limitations, and provides recommendations for future clinical trial design.
Collapse
Affiliation(s)
- Keenan A Walker
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 446D 600 North Wolfe St., Baltimore, MD, 21287, USA
| | - Melinda C Power
- Department of Epidemiology and Biostatistics, George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Rebecca F Gottesman
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 446D 600 North Wolfe St., Baltimore, MD, 21287, USA. .,Department of Epidemiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Moonen JEF, Foster-Dingley JC, van den Berg-Huijsmans AA, de Ruijter W, de Craen AJM, van der Grond J, van der Mast RC. Influence of Small Vessel Disease and Microstructural Integrity on Neurocognitive Functioning in Older Individuals: The DANTE Study Leiden. AJNR Am J Neuroradiol 2017; 38:25-30. [PMID: 27659190 DOI: 10.3174/ajnr.a4934] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/20/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Small vessel disease is a major cause of neurocognitive dysfunction in the elderly. Small vessel disease may manifest as white matter hyperintensities, lacunar infarcts, cerebral microbleeds, and atrophy, all of which are visible on conventional MR imaging or as microstructural changes determined by diffusion tensor imaging. This study investigated whether microstructural integrity is associated with neurocognitive dysfunction in older individuals, irrespective of the conventional features of small vessel disease. MATERIALS AND METHODS The study included 195 participants (75 years of age or older) who underwent conventional 3T MR imaging with DTI to assess fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. Cognitive tests were administered to assess cognitive domains, and the Geriatric Depression Scale-15 and Apathy Scale of Starkstein were used to assess symptoms of depression and apathy, respectively. The association between DTI measures and neurocognitive function was analyzed by using linear regression models. RESULTS In gray matter, a lower fractional anisotropy and higher mean diffusivity, axial diffusivity, and radial diffusivity were associated with worse executive function, psychomotor speed, and overall cognition and, in white matter, also with memory. Findings were independent of white matter hyperintensities, lacunar infarcts, and cerebral microbleeds. However, after additional adjustment for normalized brain volume, only lower fractional anisotropy in white and gray matter and higher gray matter radial diffusivity remained associated with executive functioning. DTI measures were not associated with scores on the Geriatric Depression Scale-15 or the Apathy Scale of Starkstein. CONCLUSIONS Microstructural integrity was associated with cognitive but not psychological dysfunction. Associations were independent of the conventional features of small vessel disease but attenuated after adjusting for brain volume.
Collapse
Affiliation(s)
- J E F Moonen
- From the Departments of Psychiatry (J.E.F.M., J.C.F.-D., R.C.v.d.M.)
| | | | | | | | - A J M de Craen
- Gerontology and Geriatrics (A.J.M.d.C.), Leiden University Medical Center, Leiden, the Netherlands
| | | | - R C van der Mast
- From the Departments of Psychiatry (J.E.F.M., J.C.F.-D., R.C.v.d.M.)
- Department of Psychiatry (R.C.v.d.M.), Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
22
|
Foster-Dingley JC, Hafkemeijer A, van den Berg-Huysmans AA, Moonen JEF, de Ruijter W, de Craen AJM, van der Mast RC, Rombouts SARB, van der Grond J. Structural Covariance Networks and Their Association with Age, Features of Cerebral Small-Vessel Disease, and Cognitive Functioning in Older Persons. Brain Connect 2016; 6:681-690. [PMID: 27506114 DOI: 10.1089/brain.2016.0434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, cerebral structural covariance networks (SCNs) have been shown to partially overlap with functional networks. However, although for some of these SCNs a strong association with age is reported, less is known about the association of individual SCNs with separate cognition domains and the potential mediation effect in this of cerebral small vessel disease (SVD). In 219 participants (aged 75-96 years) with mild cognitive deficits, 8 SCNs were defined based on structural covariance of gray matter intensity with independent component analysis on 3DT1-weighted magnetic resonance imaging (MRI). Features of SVD included volume of white matter hyperintensities (WMH), lacunar infarcts, and microbleeds. Associations with SCNs were examined with multiple linear regression analyses, adjusted for age and/or gender. In addition to higher age, which was associated with decreased expression of subcortical, premotor, temporal, and occipital-precuneus networks, the presence of SVD and especially higher WMH volume was associated with a decreased expression in the occipital, cerebellar, subcortical, and anterior cingulate network. The temporal network was associated with memory (p = 0.005), whereas the cerebellar-occipital and occipital-precuneus networks were associated with psychomotor speed (p = 0.002 and p < 0.001). Our data show that a decreased expression of specific networks, including the temporal and occipital lobe and cerebellum, was related to decreased cognitive functioning, independently of age and SVD. This indicates the potential of SCNs in substantiating cognitive functioning in older persons.
Collapse
Affiliation(s)
| | - Anne Hafkemeijer
- 2 Department of Methodology and Statistics, Institute of Psychology, Leiden University , Leiden, the Netherlands .,3 Department of Radiology, Leiden University Medical Center , Leiden, the Netherlands .,4 Leiden Institute for Brain and Cognition, Leiden University , Leiden, the Netherlands
| | | | - Justine E F Moonen
- 1 Department of Psychiatry, Leiden University Medical Center , Leiden, the Netherlands
| | - Wouter de Ruijter
- 5 Department of Public Health and Primary Care, Leiden University Medical Center , Leiden, the Netherlands
| | - Anton J M de Craen
- 6 Department of Gerontology and Geriatrics, Leiden University Medical Center , Leiden, the Netherlands
| | - Roos C van der Mast
- 1 Department of Psychiatry, Leiden University Medical Center , Leiden, the Netherlands .,7 Department of Psychiatry, CAPRI-University of Antwerp , Antwerp, Belgium
| | - Serge A R B Rombouts
- 2 Department of Methodology and Statistics, Institute of Psychology, Leiden University , Leiden, the Netherlands .,3 Department of Radiology, Leiden University Medical Center , Leiden, the Netherlands .,4 Leiden Institute for Brain and Cognition, Leiden University , Leiden, the Netherlands
| | - Jeroen van der Grond
- 3 Department of Radiology, Leiden University Medical Center , Leiden, the Netherlands
| |
Collapse
|
23
|
Hughes TM, Sink KM. Hypertension and Its Role in Cognitive Function: Current Evidence and Challenges for the Future. Am J Hypertens 2016; 29:149-57. [PMID: 26563965 DOI: 10.1093/ajh/hpv180] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/06/2015] [Indexed: 12/17/2022] Open
Abstract
This review summarizes evidence from studies of blood pressure and dementia-related biomarkers into our understanding of cognitive health and highlights the challenges facing studies, particularly randomized trials, of hypertension and cognition. Several lines of research suggest that elevated blood pressure, especially at midlife, is associated with cognitive decline and dementia and that treatment of hypertension could prevent these conditions. Further, studies of hypertension and brain structure show that blood pressure is associated with several forms of small vessel disease that can result in vascular dementia or interact with Alzheimer's pathology to lower the pathologic threshold at which Alzheimer's signs and symptoms manifest. In addition, recent studies of hypertension and Alzheimer's biomarkers show that elevated blood pressure and pulse pressure are associated with the extent of brain beta amyloid (Aβ) deposition and altered cerebral spinal fluid profiles of Aβ and tau indicative of Alzheimer's pathology. However, in spite of strong evidence of biological mechanisms, results from randomized trials of antihypertensive therapy for the prevention of cardiovascular or cerebrovascular disease that include cognitive endpoints do not strongly support the observational evidence that treatment of hypertension should be better for cognition. We propose that future clinical trials should consider including dementia biomarkers and assess genetic and cardiometabolic risk factors that have been associated with progression of the underlying disease pathology to help bridge these gaps.
Collapse
Affiliation(s)
- Timothy M Hughes
- Department of Internal Medicine, Division of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kaycee M Sink
- Department of Internal Medicine, Division of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
24
|
Foster-Dingley JC, Moonen JE, de Craen AJ, de Ruijter W, van der Mast RC, van der Grond J. Blood Pressure Is Not Associated With Cerebral Blood Flow in Older Persons. Hypertension 2015; 66:954-60. [DOI: 10.1161/hypertensionaha.115.05799] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/16/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Jessica C. Foster-Dingley
- From the Departments of Psychiatry (J.C.F.-D., J.E.F.M., R.C.v.d.M.), Gerontology and Geriatrics (A.J.M.d.C.), Public health and Primary care (W.d.R.), and Radiology (J.v.d.G.), Leiden University Medical Center, Leiden, The Netherlands; and Department of Psychiatry, CAPRI, University of Antwerp, Antwerpen, Belgium (R.C.v.d.M.)
| | - Justine E.F. Moonen
- From the Departments of Psychiatry (J.C.F.-D., J.E.F.M., R.C.v.d.M.), Gerontology and Geriatrics (A.J.M.d.C.), Public health and Primary care (W.d.R.), and Radiology (J.v.d.G.), Leiden University Medical Center, Leiden, The Netherlands; and Department of Psychiatry, CAPRI, University of Antwerp, Antwerpen, Belgium (R.C.v.d.M.)
| | - Anton J.M. de Craen
- From the Departments of Psychiatry (J.C.F.-D., J.E.F.M., R.C.v.d.M.), Gerontology and Geriatrics (A.J.M.d.C.), Public health and Primary care (W.d.R.), and Radiology (J.v.d.G.), Leiden University Medical Center, Leiden, The Netherlands; and Department of Psychiatry, CAPRI, University of Antwerp, Antwerpen, Belgium (R.C.v.d.M.)
| | - Wouter de Ruijter
- From the Departments of Psychiatry (J.C.F.-D., J.E.F.M., R.C.v.d.M.), Gerontology and Geriatrics (A.J.M.d.C.), Public health and Primary care (W.d.R.), and Radiology (J.v.d.G.), Leiden University Medical Center, Leiden, The Netherlands; and Department of Psychiatry, CAPRI, University of Antwerp, Antwerpen, Belgium (R.C.v.d.M.)
| | - Roos C. van der Mast
- From the Departments of Psychiatry (J.C.F.-D., J.E.F.M., R.C.v.d.M.), Gerontology and Geriatrics (A.J.M.d.C.), Public health and Primary care (W.d.R.), and Radiology (J.v.d.G.), Leiden University Medical Center, Leiden, The Netherlands; and Department of Psychiatry, CAPRI, University of Antwerp, Antwerpen, Belgium (R.C.v.d.M.)
| | - Jeroen van der Grond
- From the Departments of Psychiatry (J.C.F.-D., J.E.F.M., R.C.v.d.M.), Gerontology and Geriatrics (A.J.M.d.C.), Public health and Primary care (W.d.R.), and Radiology (J.v.d.G.), Leiden University Medical Center, Leiden, The Netherlands; and Department of Psychiatry, CAPRI, University of Antwerp, Antwerpen, Belgium (R.C.v.d.M.)
| |
Collapse
|