1
|
Ianni BD, Yiu CH, Tan ECK, Lu CY. Real-World Utilization of Medications With Pharmacogenetic Recommendations in Older Adults: A Scoping Review. Clin Transl Sci 2025; 18:e70126. [PMID: 39967300 PMCID: PMC11836345 DOI: 10.1111/cts.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025] Open
Abstract
Pharmacogenetic testing provides patient genotype information which could influence medication selection and dosing for optimal patient care. Insurance coverage for pharmacogenetic testing varies widely. A better understanding of the commonly used medications with clinically important pharmacogenetic recommendations can inform which medications and/or genes should be prioritized for coverage and reimbursement in the context of finite healthcare resources. The aim of this scoping review was to collate previous studies that investigated the utilization rate of medications that could be guided by pharmacogenetic testing. Included studies utilized electronic medical records or claims data to assess pharmacogenetic medication prescription rates for older adults (≥ 65 years old). Identified pharmacogenetic medications were classified according to therapeutic class and assessed for actionability based on the Clinical Pharmacogenetics Implementation Consortium guidelines. Across the 31 included studies, analgesic (n = 29), psychotropic (n = 29), and cardiovascular (n = 27) therapeutic classes were most commonly investigated. Study populations were primarily generalized (48%); however, some studies focused on specific populations, such as, cancer (n = 6), mental health (n = 1), and nursing home (n = 2) cohorts. A total of 215 unique pharmacogenetic medications were reported, of which, 82 were associated with actionable pharmacogenetic recommendations. The most frequent genes implicated in potential drug-gene interactions with these actionable pharmacogenetic drugs were CYP2D6 (25.6%), CYP2C19 (18.3%), and CYP2C9 (11%). Medications most frequently prescribed included pantoprazole (range 0%-49.6%), simvastatin (range 0%-54.9%), and ondansetron (range 0.1%-62.6%). Overall, the frequently prescribed medications and associated genes identified in this review could guide pharmacogenetic testing implementation into clinical practice, including insurer subsidization.
Collapse
Affiliation(s)
- Bella D. Ianni
- The University of SydneySchool of PharmacySydneyNew South WalesAustralia
- Kolling Institute, Faculty of Medicine and HealthThe University of Sydney and the Northern Sydney Local Health DistrictSydneyNew South WalesAustralia
- Department of PharmacyRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Chin Hang Yiu
- The University of SydneySchool of PharmacySydneyNew South WalesAustralia
- Kolling Institute, Faculty of Medicine and HealthThe University of Sydney and the Northern Sydney Local Health DistrictSydneyNew South WalesAustralia
| | - Edwin C. K. Tan
- The University of SydneySchool of PharmacySydneyNew South WalesAustralia
- Kolling Institute, Faculty of Medicine and HealthThe University of Sydney and the Northern Sydney Local Health DistrictSydneyNew South WalesAustralia
| | - Christine Y. Lu
- The University of SydneySchool of PharmacySydneyNew South WalesAustralia
- Kolling Institute, Faculty of Medicine and HealthThe University of Sydney and the Northern Sydney Local Health DistrictSydneyNew South WalesAustralia
- Department of PharmacyRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| |
Collapse
|
2
|
Shriver SP, Adams D, McKelvey BA, McCune JS, Miles D, Pratt VM, Ashcraft K, McLeod HL, Williams H, Fleury ME. Overcoming Barriers to Discovery and Implementation of Equitable Pharmacogenomic Testing in Oncology. J Clin Oncol 2024; 42:1181-1192. [PMID: 38386947 PMCID: PMC11003514 DOI: 10.1200/jco.23.01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 02/24/2024] Open
Abstract
Pharmacogenomics (PGx), the study of inherited genomic variation and drug response or safety, is a vital tool in precision medicine. In oncology, testing to identify PGx variants offers patients the opportunity for customized treatments that can minimize adverse effects and maximize the therapeutic benefits of drugs used for cancer treatment and supportive care. Because individuals of shared ancestry share specific genetic variants, PGx factors may contribute to outcome disparities across racial and ethnic categories when genetic ancestry is not taken into account or mischaracterized in PGx research, discovery, and application. Here, we examine how the current scientific understanding of the role of PGx in differential oncology safety and outcomes may be biased toward a greater understanding and more complete clinical implementation of PGx for individuals of European descent compared with other genetic ancestry groups. We discuss the implications of this bias for PGx discovery, access to care, drug labeling, and patient and provider understanding and use of PGx approaches. Testing for somatic genetic variants is now the standard of care in treatment of many solid tumors, but the integration of PGx into oncology care is still lacking despite demonstrated actionable findings from PGx testing, reduction in avoidable toxicity and death, and return on investment from testing. As the field of oncology is poised to expand and integrate germline genetic variant testing, it is vital that PGx discovery and application are equitable for all populations. Recommendations are introduced to address barriers to facilitate effective and equitable PGx application in cancer care.
Collapse
Affiliation(s)
| | | | | | - Jeannine S McCune
- City of Hope/Beckman Research Institute Department of Hematologic Malignancies Translational Sciences, Duarte, CA
| | | | | | | | | | | | | |
Collapse
|
3
|
Analytical Validation of a Computational Method for Pharmacogenetic Genotyping from Clinical Whole Exome Sequencing. J Mol Diagn 2022; 24:576-585. [PMID: 35452844 DOI: 10.1016/j.jmoldx.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Germline whole exome sequencing from molecular tumor boards has the potential to be repurposed to support clinical pharmacogenomics. However, accurately calling pharmacogenomics-relevant genotypes from exome sequencing data remains challenging. Accordingly, this study assessed the analytical validity of the computational tool, Aldy, in calling pharmacogenomics-relevant genotypes from exome sequencing data for 13 major pharmacogenes. Germline DNA from whole blood was obtained for 164 subjects seen at an institutional molecular solid tumor board. All subjects had whole exome sequencing from Ashion Analytics and panel-based genotyping from an institutional pharmacogenomics laboratory. Aldy version 3.3 was operationalized on the LifeOmic Precision Health Cloud with copy number fixed to two copies per gene. Aldy results were compared with those from genotyping for 56 star allele-defining variants within CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP4F2, DPYD, G6PD, NUDT15, SLCO1B1, and TPMT. Read depth was >100× for all variants except CYP3A4∗22. For 75 subjects in the validation cohort, all 3393 Aldy variant calls were concordant with genotyping. Aldy calls for 736 diplotypes containing alleles assessed by both platforms were also concordant. Aldy identified additional star alleles not covered by targeted genotyping for 139 diplotypes. Aldy accurately called variants and diplotypes for 13 major pharmacogenes, except for CYP2D6 variants involving copy number variations, thus allowing repurposing of whole exome sequencing to support clinical pharmacogenomics.
Collapse
|
4
|
Shugg T, Ly RC, Rowe EJ, Philips S, Hyder MA, Radovich M, Rosenman MB, Pratt VM, Callaghan JT, Desta Z, Schneider BP, Skaar TC. Clinical Opportunities for Germline Pharmacogenetics and Management of Drug-Drug Interactions in Patients With Advanced Solid Cancers. JCO Precis Oncol 2022; 6:e2100312. [PMID: 35201852 PMCID: PMC9848543 DOI: 10.1200/po.21.00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/26/2021] [Accepted: 01/26/2022] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Precision medicine approaches, including germline pharmacogenetics (PGx) and management of drug-drug interactions (DDIs), are likely to benefit patients with advanced cancer who are frequently prescribed multiple concomitant medications to treat cancer and associated conditions. Our objective was to assess the potential opportunities for PGx and DDI management within a cohort of adults with advanced cancer. METHODS Medication data were collected from the electronic health records for 481 subjects since their first cancer diagnosis. All subjects were genotyped for variants with clinically actionable recommendations in Clinical Pharmacogenetics Implementation Consortium guidelines for 13 pharmacogenes. DDIs were defined as concomitant prescription of strong inhibitors or inducers with sensitive substrates of the same drug-metabolizing enzyme and were assessed for six major cytochrome P450 (CYP) enzymes. RESULTS Approximately 60% of subjects were prescribed at least one medication with Clinical Pharmacogenetics Implementation Consortium recommendations, and approximately 14% of subjects had an instance for actionable PGx, defined as a prescription for a drug in a subject with an actionable genotype. The overall subject-level prevalence of DDIs and serious DDIs were 50.3% and 34.8%, respectively. Serious DDIs were most common for CYP3A, CYP2D6, and CYP2C19, occurring in 24.9%, 16.8%, and 11.7% of subjects, respectively. When assessing PGx and DDIs together, approximately 40% of subjects had at least one opportunity for a precision medicine-based intervention and approximately 98% of subjects had an actionable phenotype for at least one CYP enzyme. CONCLUSION Our findings demonstrate numerous clinical opportunities for germline PGx and DDI management in adults with advanced cancer.
Collapse
Affiliation(s)
- Tyler Shugg
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Reynold C. Ly
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Elizabeth J. Rowe
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Santosh Philips
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Mustafa A. Hyder
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Milan Radovich
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Marc B. Rosenman
- Ann & Robert H. Lurie Children's Hospital of Chicago and Institute of Public Health, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Victoria M. Pratt
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - John T. Callaghan
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, INPreprint version available on MedRXiv, https://www.medrxiv.org/content/10.1101/2021.08.23.21262496v1.full-text
| | - Zeruesenay Desta
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Bryan P. Schneider
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Todd C. Skaar
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
5
|
Cacabelos R, Naidoo V, Corzo L, Cacabelos N, Carril JC. Genophenotypic Factors and Pharmacogenomics in Adverse Drug Reactions. Int J Mol Sci 2021; 22:ijms222413302. [PMID: 34948113 PMCID: PMC8704264 DOI: 10.3390/ijms222413302] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adverse drug reactions (ADRs) rank as one of the top 10 leading causes of death and illness in developed countries. ADRs show differential features depending upon genotype, age, sex, race, pathology, drug category, route of administration, and drug–drug interactions. Pharmacogenomics (PGx) provides the physician effective clues for optimizing drug efficacy and safety in major problems of health such as cardiovascular disease and associated disorders, cancer and brain disorders. Important aspects to be considered are also the impact of immunopharmacogenomics in cutaneous ADRs as well as the influence of genomic factors associated with COVID-19 and vaccination strategies. Major limitations for the routine use of PGx procedures for ADRs prevention are the lack of education and training in physicians and pharmacists, poor characterization of drug-related PGx, unspecific biomarkers of drug efficacy and toxicity, cost-effectiveness, administrative problems in health organizations, and insufficient regulation for the generalized use of PGx in the clinical setting. The implementation of PGx requires: (i) education of physicians and all other parties involved in the use and benefits of PGx; (ii) prospective studies to demonstrate the benefits of PGx genotyping; (iii) standardization of PGx procedures and development of clinical guidelines; (iv) NGS and microarrays to cover genes with high PGx potential; and (v) new regulations for PGx-related drug development and PGx drug labelling.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain
- Correspondence: ; Tel.: +34-981-780-505
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain;
| | - Lola Corzo
- Department of Medical Biochemistry, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain;
| | - Natalia Cacabelos
- Department of Medical Documentation, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain;
| | - Juan C. Carril
- Departments of Genomics and Pharmacogenomics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, 15165 Corunna, Spain;
| |
Collapse
|
6
|
Hutchcraft ML, Lin N, Zhang S, Sears C, Zacholski K, Belcher EA, Durbin EB, Villano JL, Cavnar MJ, Arnold SM, Ueland FR, Kolesar JM. Real-World Evaluation of Universal Germline Screening for Cancer Treatment-Relevant Pharmacogenes. Cancers (Basel) 2021; 13:4524. [PMID: 34572750 PMCID: PMC8468204 DOI: 10.3390/cancers13184524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to determine the frequency of clinically actionable treatment-relevant germline pharmacogenomic variants in patients with cancer and assess the real-world clinical utility of universal screening using whole-exome sequencing in this population. Cancer patients underwent research-grade germline whole-exome sequencing as a component of sequencing for somatic variants. Analysis in a clinical bioinformatics pipeline identified clinically actionable pharmacogenomic variants. Clinical Pharmacogenetics Implementation Consortium guidelines defined clinical actionability. We assessed clinical utility by reviewing electronic health records to determine the frequency of patients receiving pharmacogenomically actionable anti-cancer agents and associated outcomes. This observational study evaluated 291 patients with cancer. More than 90% carried any clinically relevant pharmacogenetic variant. At least one disease-relevant variant impacting anti-cancer agents was identified in 26.5% (77/291). Nine patients with toxicity-associated pharmacogenomic variants were treated with a relevant medication: seven UGT1A1 intermediate metabolizers were treated with irinotecan, one intermediate DPYD metabolizer was treated with 5-fluorouracil, and one TPMT poor metabolizer was treated with mercaptopurine. These individuals were more likely to experience treatment-associated toxicities than their wild-type counterparts (p = 0.0567). One UGT1A1 heterozygote died after a single dose of irinotecan due to irinotecan-related adverse effects. Identifying germline pharmacogenomic variants was feasible using whole-exome sequencing. Actionable pharmacogenetic variants are common and relevant to patients undergoing cancer treatment. Universal pharmacogenomic screening can be performed using whole-exome sequencing data originally obtained for quality control purposes and could be considered for patients who are candidates for irinotecan, 5-fluorouracil, capecitabine, and mercaptopurine.
Collapse
Affiliation(s)
- Megan L. Hutchcraft
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA; (M.L.H.); (F.R.U.)
| | - Nan Lin
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY 40536, USA;
| | - Shulin Zhang
- Department of Pathology and Laboratory Medicine, University of Kentucky Chandler Medical Center, Lexington, KY 40536, USA; (S.Z.); (C.S.)
| | - Catherine Sears
- Department of Pathology and Laboratory Medicine, University of Kentucky Chandler Medical Center, Lexington, KY 40536, USA; (S.Z.); (C.S.)
| | - Kyle Zacholski
- Department of Pharmacy, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA;
| | - Elizabeth A. Belcher
- Department of Clinical Research, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA;
| | - Eric B. Durbin
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
- Kentucky Cancer Registry, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA
| | - John L. Villano
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA; (J.L.V.); (S.M.A.)
| | - Michael J. Cavnar
- Division of Surgical Oncology, Department of Surgery, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA;
| | - Susanne M. Arnold
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA; (J.L.V.); (S.M.A.)
| | - Frederick R. Ueland
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA; (M.L.H.); (F.R.U.)
| | - Jill M. Kolesar
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA; (M.L.H.); (F.R.U.)
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY 40536, USA;
| |
Collapse
|
7
|
Brainson CF, Huang B, Chen Q, McLouth LE, He C, Hao Z, Arnold SM, Zinner RG, Mullett TW, Bocklage TJ, Orren DK, Villano JL, Durbin EB. Description of a Lung Cancer Hotspot: Disparities in Lung Cancer Histology, Incidence, and Survival in Kentucky and Appalachian Kentucky. Clin Lung Cancer 2021; 22:e911-e920. [PMID: 33958300 DOI: 10.1016/j.cllc.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Kentucky is recognized as the state with the highest lung cancer burden for more than 2 decades, but how lung cancer differs in Kentucky relative to other US populations is not fully understood. PATIENTS AND METHODS We examined lung cancer reported to the Surveillance, Epidemiology, and End Results (SEER) Program by Kentucky and the other SEER regions for patients diagnosed between 2012 and 2016. Our analyses included histologic types, incidence rates, stage at diagnosis, and survival in Kentucky and Appalachian Kentucky relative to other SEER regions. RESULTS We found that both squamous cell carcinomas and small-cell lung cancers represent larger proportions of lung cancer diagnoses in Kentucky and Appalachian Kentucky than they do in the SEER registries. Furthermore, age-adjusted cancer incidence rates were higher in Kentucky for every subtype of lung cancer examined. Most notably, for Appalachian women the rate of small-cell carcinomas was 3.5-fold higher, and for Appalachian men the rate of squamous cell carcinoma was 3.1-fold higher, than the SEER rates. In Kentucky, lung cancers were diagnosed at later stages and lung cancer survival was lower for adenocarcinoma and neuroendocrine carcinomas than in SEER registries. Squamous cell carcinomas and small-cell carcinomas were most lethal in Appalachian Kentucky. CONCLUSION Together, these data highlight the considerable disparities among lung cancer cases in the United States and demonstrate the continuing high burden and poor survival of lung cancer in Kentucky and Appalachian Kentucky. Strategies to identify and rectify causes of these disparities are discussed.
Collapse
Affiliation(s)
- Christine F Brainson
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY; Markey Cancer Center, University of Kentucky, Lexington, KY.
| | - Bin Huang
- Markey Cancer Center, University of Kentucky, Lexington, KY; Division of Cancer Biostatistics, College of Medicine, University of Kentucky, Lexington, KY; Kentucky Cancer Registry, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Quan Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY; Kentucky Cancer Registry, Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Laurie E McLouth
- Markey Cancer Center, University of Kentucky, Lexington, KY; Department of Behavioral Science, Center for Health Equity Transformation, College of Medicine, University of Kentucky, Lexington, KY
| | - Chunyan He
- Markey Cancer Center, University of Kentucky, Lexington, KY; Department of Medicine, Division of Medical Oncology, College of Medicine, University of Kentucky, Lexington, KY
| | - Zhonglin Hao
- Markey Cancer Center, University of Kentucky, Lexington, KY; Department of Medicine, Division of Medical Oncology, College of Medicine, University of Kentucky, Lexington, KY
| | - Susanne M Arnold
- Markey Cancer Center, University of Kentucky, Lexington, KY; Department of Medicine, Division of Medical Oncology, College of Medicine, University of Kentucky, Lexington, KY
| | - Ralph G Zinner
- Markey Cancer Center, University of Kentucky, Lexington, KY; Department of Medicine, Division of Medical Oncology, College of Medicine, University of Kentucky, Lexington, KY
| | - Timothy W Mullett
- Department of Surgery, Division of Cardiothoracic Surgery, College of Medicine, University of Kentucky, Lexington, KY
| | - Therese J Bocklage
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY
| | - David K Orren
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY; Markey Cancer Center, University of Kentucky, Lexington, KY
| | - John L Villano
- Markey Cancer Center, University of Kentucky, Lexington, KY; Department of Medicine, Division of Medical Oncology, College of Medicine, University of Kentucky, Lexington, KY
| | - Eric B Durbin
- Markey Cancer Center, University of Kentucky, Lexington, KY; Kentucky Cancer Registry, Markey Cancer Center, University of Kentucky, Lexington, KY; Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|