1
|
Vimercati L, Bisceglia L, Cavone D, Caputi A, De Maria L, Delfino MC, Corrado V, Ferri GM. Environmental Monitoring of PAHs Exposure, Biomarkers and Vital Status in Coke Oven Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072199. [PMID: 32218300 PMCID: PMC7178092 DOI: 10.3390/ijerph17072199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
A follow-up study of a cohort of workers from a coke plant compared with a control group from the same industrial area was conducted in 2019. The recruitment and environmental and biomarker measurements were performed during 1993/1994. The environmental concentrations of polycyclic aromatic hydrocarbons (PAH), B(a)P, pyrene and nitro-PAH were measured. Personal data were collected via an individual semi-structured questionnaire by a trained physician. All biomarkers were measured after a specific blood drawing for every test. Significant risks (ORs) were observed for nitro-PAH (≥0.12 µg/m3) [OR = 7.96 (1.01–62.82)], urinary 1-hydroxypyrene (1-OHpy) (≥0.99 µmoles/moles of creatinine) [OR = 11.71 (1.47–92.90)], PAH DNA adducts (P32) (≥2.69 adducts/108 nucleotides) [OR = 5.46 (1.17–25.58)], total nitro-PAH hemoglobin adducts (≥161.68 fg/µg of Hb) [OR = 5.92 (1.26–27.86)], sister chromatid exchange (SCE) with TCR (≥377.84 SCE/cell chromosomes) [OR = 13.06 (3.95–93.10)], sister chromatid exchange with T (≥394.72 total SCE) [OR = 13.06 (3.95–93.10)], and sister chromatid exchange with X (≥8.19 mean SCE) [OR = 13.06 (3.95–93.10)]. Significant risk of death for all causes and chromosomal aberrations (48 h) (OR = 7.19 [1.19–43.44]) or micronuclei in culture at 48 h (OR = 3.86 [1.04–14.38]) were also found.
Collapse
Affiliation(s)
- Luigi Vimercati
- Interdisciplinary Department of Medicine, Occupational Medicine “B. Ramazzini”, University of Bari Medical School, 11 G. Cesare Square, 70124 Bari, Italy; (D.C.); (A.C.); (L.D.M.); (M.C.D.); (V.C.); (G.M.F.)
- Correspondence: ; Tel.: +39-080-547-8216
| | - Lucia Bisceglia
- Strategic Regional Health and Social Agency of Puglia (AReS Puglia), 52 G. Gentile Street, 70126 Bari, Italy;
| | - Domenica Cavone
- Interdisciplinary Department of Medicine, Occupational Medicine “B. Ramazzini”, University of Bari Medical School, 11 G. Cesare Square, 70124 Bari, Italy; (D.C.); (A.C.); (L.D.M.); (M.C.D.); (V.C.); (G.M.F.)
| | - Antonio Caputi
- Interdisciplinary Department of Medicine, Occupational Medicine “B. Ramazzini”, University of Bari Medical School, 11 G. Cesare Square, 70124 Bari, Italy; (D.C.); (A.C.); (L.D.M.); (M.C.D.); (V.C.); (G.M.F.)
| | - Luigi De Maria
- Interdisciplinary Department of Medicine, Occupational Medicine “B. Ramazzini”, University of Bari Medical School, 11 G. Cesare Square, 70124 Bari, Italy; (D.C.); (A.C.); (L.D.M.); (M.C.D.); (V.C.); (G.M.F.)
| | - Maria Celeste Delfino
- Interdisciplinary Department of Medicine, Occupational Medicine “B. Ramazzini”, University of Bari Medical School, 11 G. Cesare Square, 70124 Bari, Italy; (D.C.); (A.C.); (L.D.M.); (M.C.D.); (V.C.); (G.M.F.)
| | - Vincenzo Corrado
- Interdisciplinary Department of Medicine, Occupational Medicine “B. Ramazzini”, University of Bari Medical School, 11 G. Cesare Square, 70124 Bari, Italy; (D.C.); (A.C.); (L.D.M.); (M.C.D.); (V.C.); (G.M.F.)
| | - Giovanni Maria Ferri
- Interdisciplinary Department of Medicine, Occupational Medicine “B. Ramazzini”, University of Bari Medical School, 11 G. Cesare Square, 70124 Bari, Italy; (D.C.); (A.C.); (L.D.M.); (M.C.D.); (V.C.); (G.M.F.)
| |
Collapse
|
2
|
Frigerio G, Campo L, Mercadante R, Mielżyńska-Švach D, Pavanello S, Fustinoni S. Urinary Mercapturic Acids to Assess Exposure to Benzene and Other Volatile Organic Compounds in Coke Oven Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1801. [PMID: 32164281 PMCID: PMC7084241 DOI: 10.3390/ijerph17051801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/11/2023]
Abstract
Coke production was classified as carcinogenic to humans by the International Agency for Research on Cancer. Besides polycyclic aromatic hydrocarbons, coke oven workers may be exposed to benzene and other volatile organic compounds (VOCs). The aim of this study was to assess the exposure to several VOCs in 49 coke oven workers and 49 individuals living in the same area by determining urinary mercapturic acids. Active tobacco smoking was an exclusion criterion for both groups. Mercapturic acids were investigated by a validated isotopic dilution LC-MS/MS method. Linear models were built to correct for different confounding variables. Urinary levels of N-acetyl-S-phenyl-L-cysteine (SPMA) (metabolite of benzene), N-acetyl-S-(2-hydroxy-1/2-phenylethyl)-L-cysteine (PHEMA) (metabolite of styrene), N-acetyl-S-(2-cyanoethyl)-L-cysteine (CEMA) (metabolite of acrylonitrile), N-acetyl-S-[1-(hydroxymethyl)-2-propen-1-yl)-L-cysteine and N-acetyl-S-(2-hydroxy-3-buten-1-yl)-L-cysteine (MHBMA) (metabolites of 1,3-butadiene) were 2-10 fold higher in workers than in controls (p < 0.05). For SPMA, in particular, median levels were 0.02 and 0.31 µg/g creatinine in workers and controls, respectively. Among workers, coke makers were more exposed to PHEMA and SPMA than foremen and engine operators. The comparison with biological limit values shows that the exposure of workers was within 20% of the limit values for all biomarkers, moreover three subjects exceeded the restrictive occupational limit value recently proposed by the European Chemicals Agency (ECHA) for SPMA.
Collapse
Affiliation(s)
- Gianfranco Frigerio
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Laura Campo
- Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Rosa Mercadante
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Danuta Mielżyńska-Švach
- Department of Medical Biology and Genetics, Faculty of Medicine, WST University of Technology, 40-555 Katowice, Poland
| | - Sofia Pavanello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
- Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
3
|
Wong TH, Lee CL, Su HH, Lee CL, Wu CC, Wang CC, Sheu CC, Lai RS, Leung SY, Lin CC, Wei YF, Wang CJ, Lin YC, Chen HL, Huang MS, Yen JH, Huang SK, Suen JL. A prominent air pollutant, Indeno[1,2,3-cd]pyrene, enhances allergic lung inflammation via aryl hydrocarbon receptor. Sci Rep 2018; 8:5198. [PMID: 29581487 PMCID: PMC5979946 DOI: 10.1038/s41598-018-23542-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is associated with asthma, but its regulatory mechanisms remain incompletely defined. We report herein that elevated levels of urinary 1-hydroxypyrene, a biomarker of PAH exposure, were found in asthmatic subjects (n = 39) as compared to those in healthy subjects (n = 43) living in an industrial city of Taiwan, where indeno[1,2,3-cd]pyrene (IP) was found to be a prominent PAH associated with ambient PM2.5. In a mouse model, intranasal exposure of mice with varying doses of IP significantly enhanced antigen-induced allergic inflammation, including increased airway eosinophilia, Th2 cytokines, including IL-4 and IL-5, as well as antigen-specific IgE level, which was absent in dendritic cell (DC)-specific aryl hydrocarbon receptor (AhR)-null mice. Mechanistically, IP treatment significantly altered DC's function, including increased level of pro-inflammatory IL-6 and decreased generation of anti-inflammatory IL-10. The IP's effect was lost in DCs from mice carrying an AhR-mutant allele. Taken together, these results suggest that chronic exposure to environmental PAHs may pose a significant risk for asthma, in which IP, a prominent ambient PAH in Taiwan, was shown to enhance the severity of allergic lung inflammation in mice through, at least in part, its ability in modulating DC's function in an AhR-dependent manner.
Collapse
Affiliation(s)
- Tzu-Hsuan Wong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chon-Lin Lee
- Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Lai Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Chyun Sheu
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Divison of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ruay-Sheng Lai
- Division of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Chi-Cheng Lin
- Chest Division, Department of Internal Medicine, Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Ping-Tung, Taiwan
| | - Yu-Feng Wei
- Division of Chest Medicine, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chien-Jen Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Chun Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hua-Ling Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Shyan Huang
- Divison of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Scarselli A, Di Marzio D, Marinaccio A, Iavicoli S. Assessment of work-related exposure to polycyclic aromatic hydrocarbons in Italy. Am J Ind Med 2013; 56:897-906. [PMID: 23450729 DOI: 10.1002/ajim.22172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are generally present in the workplace environment as complex mixtures and often difficult to identify a priori. OBJECTIVES The aim of this study is to evaluate the level and coverage of occupational exposure to PAHs in Italy. METHODS Data were collected from exposure registries of companies with mandatory reporting to the National Workers' Compensation Authority. Statistical analyses were carried out on the retrieved information and the number of workers potentially exposed was estimated for some industrial sectors. RESULTS Overall 12,849 measurements of exposure levels to individual PAHs were selected from the database of registries in the period 1996-2010. Most exposures occurred in the manufacture of chemicals (N = 5,383, 51%), and the occupational group most frequently measured was chemical-processing-plant operator (N = 3,930, 31%). Measurements were associated to various PAHs, including benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, dibenz[a,h]anthracene, and benzo[j]fluoranthene. Overall, 39,230 workers were estimated as potentially at risk of exposure to PAHs in the selected industrial sectors. CONCLUSIONS This study summarized data recorded in the Italian occupational exposure database and identified specific exposure patterns to PAHs. The systematic recording of occupational exposures is a source of data that allows the recognition, control, and prevention of high-risk situations for workers' health.
Collapse
Affiliation(s)
- Alberto Scarselli
- Epidemiology Unit, Occupational Medicine Department, Research Division, Italian Workers' Compensation Authority, Rome, Italy.
| | | | | | | |
Collapse
|
5
|
Campo L, Fustinoni S, Consonni D, Pavanello S, Kapka L, Siwinska E, Mielzyňska D, Bertazzi P. Urinary carcinogenic 4-6 ring polycyclic aromatic hydrocarbons in coke oven workers and in subjects belonging to the general population: role of occupational and environmental exposure. Int J Hyg Environ Health 2013; 217:231-8. [PMID: 23867119 DOI: 10.1016/j.ijheh.2013.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 05/03/2013] [Accepted: 06/04/2013] [Indexed: 11/30/2022]
Abstract
AIM A new solid phase microextraction-gas chromatography-mass spectrometry method (SPME-GC-MS) to detect urinary unmetabolized 3-, 6-ring polycyclic aromatic hydrocarbons (PAHs) was applied to coke oven workers and general population subjects with the aim to assess exposure to carcinogenic PAHs, to evaluate the role of occupational and environmental variables on PAHs levels, and to compare present results with those previously obtained with a less sensitive method. METHODS A total of 104 coke oven workers (CW) from Poland [recruited in 2000 (CW-2000; n=55) and 2006 (CW-2006; n=49)], and 45 control subjects from the same area, provided urine spot samples for measurement of 10 PAHs (from phenanthrene to benzo[g,h,i]perylene). The comparison between the two methods was performed only on CW-2000 subjects. Information regarding personal characteristics and job variables was collected by a questionnaire. RESULTS The new method enables the quantification of 5-, 6-ring PAHs; precision and accuracy were in the 7.3-20.8% and 89.4-110% range, respectively; in CW-2000 samples results obtained with the new and the old method were highly correlated (Lin's concordance correlation coefficients: from 0.790 to 0.965); the mean difference between measured PAHS increased with the molecular weight of the analytes (from +5 to +27%). Urinary PAHs were above or equal to the quantification limit, depending on the compound, in 67-100% (min-max), 26-100% and 6-100% of samples from CW-2000, CW-2006 and controls, respectively. Chrysene and benz[a]anthracene were the most abundant carcinogenic PAHs with median levels of 43.4, 13.4, and 2.3 ng/L and 45.9, 14.9, and 0.7 ng/L in CW-2000, CW-2006, and controls, respectively, while benzo[a]pyrene levels were 6.5, 0.7 and <0.5 ng/L. The multiple linear regression model showed that the determinants of exposure were the use of wood and/or coke for house heating for controls, and job title or the plant for CW-2006. CONCLUSIONS Urinary benzo[a]pyrene and other carcinogenic PAHs were, for the first time, quantified in urine samples from both occupationally and environmentally exposed subjects. These results show that urinary PAHs can discriminate exposure at different levels. Moreover, the simultaneous determination of several PAHs allows for the development of excretion profiles to assess exposure to specific compounds.
Collapse
Affiliation(s)
- Laura Campo
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Consonni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sofia Pavanello
- Department of Environmental Medicine and Public Health, University of Padova, Padova, Italy
| | - Lucyna Kapka
- Institute of Agricultural Medicine, Lublin, Poland
| | - Ewa Siwinska
- Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
| | - Danuta Mielzyňska
- Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
| | - PierAlberto Bertazzi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|